Independent Discrete Variables

- Two discrete random variables X and Y are called independent if:

$$
p(x, y)=p_{X}(x) p_{Y}(y) \text { for all } x, y
$$

- Intuitively: knowing the value of X tells us nothing about the distribution of Y (and vice versa)
- If two variables are not independent, they are called dependent
- Similar conceptually to independent events, but we are dealing with multiple variables
- Keep your events and variables distinct (and clear)!

Coin Flips

- Flip coin with probability p of "heads"
- Flip coin a total of $n+m$ times
- Let $X=$ number of heads in first n flips
- Let $\mathrm{Y}=$ number of heads in next m flips
$P(X=x, Y=y)=\binom{n}{x} p^{x}(1-p)^{n-x}\binom{m}{y} p^{y}(1-p)^{m-y}$

$$
=P(X=x) P(Y=y)
$$

- X and Y are independent
- Let $Z=$ number of total heads in $n+m$ flips
- Are X and Z independent?
. What if you are told $Z=0$?

Web Server Requests

- Let $\mathrm{N}=$ \# of requests to web server/day
- Suppose N ~ Poi(λ)
- Each request comes from a human (probability $=p$) or from a "bot" (probability $=(1-p)$), independently
- $X=\#$ requests from humans/day $(X \mid N) \sim \operatorname{Bin}(N, p)$
- $\mathrm{Y}=$ \# requests from bots/day $\quad(\mathrm{Y} \mid \mathrm{N}) \sim \operatorname{Bin}(\mathrm{N}, 1-p)$ $P(X=i, Y=j)=P(X=i, Y=j \mid X+Y=i+j) P(X+Y=i+j)$ $+P(X=i, Y=j \mid X+Y \neq i+j) P(X+Y \neq i+j)$
- Note: $P(X=i, Y=j \mid X+Y \neq i+j)=0$
$P(X=i, Y=j \mid X+Y=i+j)=\binom{i+j}{i} p^{i}(1-p)^{j}$
$P(X+Y=i+j)=e^{-\lambda} \frac{\lambda^{i+j}}{}$
$P(X+Y=i+j)=e^{-\lambda} \frac{\lambda^{i+j}}{(i+j)!}$
$P(X=i, Y=j)=\binom{i+j}{i} p^{i}(1-p)^{j} e^{-\lambda} \frac{\lambda^{i+j}}{(i+j)!}$

Independent Continuous Variables

- Two continuous random variables X and Y are called independent if:

$$
\mathrm{P}(\mathrm{X} \leq a, \mathrm{Y} \leq b)=\mathrm{P}(\mathrm{X} \leq a) \mathrm{P}(\mathrm{Y} \leq b) \text { for any } a, b
$$

- Equivalently:

$$
\begin{aligned}
& F_{X, Y}(a, b)=F_{X}(a) F_{Y}(b) \text { for all } a, b \\
& f_{X, Y}(a, b)=f_{X}(a) f_{Y}(b) \text { for all } a, b
\end{aligned}
$$

- More generally, joint density factors separately:
$f_{X, Y}(x, y)=h(x) g(y)$ where $-\infty<x, y<\infty$

Web Server Requests (cont.)

- Let $N=\#$ of requests to web server/day
- Suppose N ~ Poi (λ)
- Each request comes from a human (probability $=p$) or from a "bot" (probability $=(1-p)$), independently
- $X=$ \# requests from humans/day $\quad X \mid N \sim \operatorname{Bin}(N, p)$
- $\mathrm{Y}=$ \# requests from bots/day $\quad \mathrm{Y} \mid \mathrm{N} \sim \operatorname{Bin}(\mathrm{N}, 1-p)$ $P(X=i, Y=j)=\frac{(i+j)!}{i!j!} p^{i}(1-p)^{j} e^{-\lambda} \frac{\lambda^{i+j}}{(i+j)!}=e^{-\lambda} \frac{(\lambda p)^{i}}{i!j!}(\lambda(1-p))^{j}$ $=e^{-\lambda p} \frac{(\lambda p)^{i}}{i!} \cdot e^{-\lambda(1-p)} \frac{(\lambda(1-p))^{j}}{j!}=P(X=i) P(Y=j)$
where $X \sim \operatorname{Poi}(\lambda p)$ and $Y \sim \operatorname{Poi}(\lambda(1-p))$
- X and Y are independent!

Pop Quiz (Just Kidding...)

- Consider joint density function of X and Y :

$$
f_{X, Y}(x, y)=6 e^{-3 x} e^{-2 y} \text { for } 0<x, y<\infty
$$

- Are X and Y independent? Yes!

Let $h(x)=3 e^{-3 x}$ and $g(y)=2 e^{-2 y}$, so $f_{X, Y}(x, y)=h(x) g(y)$

- Consider joint density function of X and Y :

$$
f_{X, Y}(x, y)=4 x y \text { for } 0<x, y<1
$$

- Are X and Y independent? Yes!

Let $h(x)=2 x$ and $g(y)=2 y$, so $f_{X, Y}(x, y)=h(x) g(y)$

- Now add constraint that: $0<(x+y)<1$
- Are X and Y independent? No!
- Cannot capture constraint on $\mathrm{x}+\mathrm{y}$ in factorization!

The Joy of Meetings

- Two people set up a meeting for $12 p m$
- Each arrives independently at time uniformly distributed between 12pm and 12:30pm
- $X=\#$ min. past $12 p m$ person 1 arrives $X \sim \operatorname{Uni}(0,30)$
- $Y=\#$ min. past $12 p m$ person 2 arrives $Y \sim \operatorname{Uni}(0,30)$
- What is P (first to arrive waits $>10 \mathrm{~min}$. for other)?
$P(X+10<Y)+P(Y+10<X)=2 P(X+10<Y)$ by symmetry
$2 P(X+10<Y)=2 \iint_{x+10<y} f(x, y) d x d y=2 \iint_{x+10<y} f_{X}(x) f_{Y}(y) d x d y$
$=2 \int_{y=10}^{30} \int_{x=0}^{y-10}\left(\frac{1}{30}\right)^{2} d x d y=\frac{2}{30^{2}} \int_{y=10}^{x+10<y}\left(\int_{x=0}^{y-10} d x\right) d y=\frac{2}{30^{2}} \int_{y=10}^{30}\left(\left.x\right|^{x+10<y}\binom{y-10}{0} d y=\frac{2}{30^{2}} \int_{y=10}^{30}(y-10) d y\right.$ $=\left.\frac{2}{30^{2}}\left(\frac{y^{2}}{2}-10 y\right)\right|_{10} ^{30}=\frac{2}{30^{2}}\left[\left(\frac{30^{2}}{2}-300\right)-\left(\frac{10^{2}}{2}-100\right)\right]=\frac{4}{9}$

Independence is Symmetric

- If random variables X and Y independent, then
- X independent of Y , and
- Y independent of X
- Duh!? Duh, indeed...
- Let X_{1}, X_{2}, \ldots be a sequence of independent and identically distributed (I.I.D.) random variables
- Say $X_{n}>X_{i}$ for all $i=1, \ldots, n-1$ (i.e. $X_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$) -Call X_{n} a "record value" (e.g., record temp. for particular day)
- Let event $A_{i}=X_{i}$ is "record value"
- Is A_{n+1} independent of A_{n} ?
- Is A_{n} independent of A_{n+1} ?
- Easier to answer: Yes!
- By symmetry, $\mathrm{P}\left(\mathrm{A}_{\mathrm{i}}\right)=1 / \mathrm{n}$ for $1 \leq i \leq \mathrm{n}$

Independence of Multiple Variables

- n random variables $X_{1}, X_{2}, \ldots, X_{n}$ are called independent if:
$P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)=\prod_{i=1}^{n} P\left(X_{i}=x_{i}\right)$ for all $x_{1}, x_{2}, \ldots, x_{n}$
- Analogously, for continuous random variables: $P\left(X_{1} \leq a_{1}, X_{2} \leq a_{2}, \ldots, X_{n} \leq a_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \leq a_{i}\right)$ for all $a_{1}, a_{2}, \ldots, a_{n}$

Choosing a Random Subset

- From set of n elements, choose a subset of size k such that all $\binom{n}{k}$ possibilities are equally likely
- Only have random () , which simulates X ~ Uni(0,1)
- Brute force:
- Generate all subsets of size k
- Randomly pick one (divide (0,1) into $\binom{n}{k}$ intervals)
- Expensive with regard to time and space
- Bad times!

(Happily) Choosing a Random Subset

- Good times:
int indicator (double p) \{ if (random () < p) return 1; else return 0;
\}
subset r Subset (k, set of size n) \{
subset_size $=0$;
I[1] =-indicator ((double) k / n) ;
for (i = 1; i < n; i++)
subset_size += I[i];
$I[i+1]^{-}=$indicator $((k-$ subset_size)/(n - i));
\}
return (subset containing element[i] iff $I[i]==1$);
\}
$P(I[1]=1)=\frac{k}{n}$ and $P(I[i+1]=1 \mid I[1], \ldots, I[i])=\frac{k-\sum_{j=1}^{i}[j]}{n-i}$ where $1<i<n$

Random Subsets the Happy Way

- Proof (Induction on $(\mathrm{k}+\mathrm{n})$): (i.e., why this algorithm works)
- Base Case: $k=1, n=1$, Set $S=\{a\}$, rSubset returns $\{a\}$ with $p=1 /\binom{1}{1}$
- Inductive Hypoth. (IH): for $\mathrm{k}+\mathrm{x} \leq \mathrm{c}$, Given set $\mathrm{S},|\mathrm{S}|=\mathrm{x}$ and $\mathrm{k} \leq \mathrm{x}$, rSubset returns any subset S^{\prime} of S, where $\left|S^{\prime}\right|=k$, with $\mathrm{p}=1 /\binom{x}{k}$
- Case 1: (where $\mathrm{k}+\mathrm{n} \leq \mathrm{c}+1)|\mathrm{S}|=\mathrm{n}(=\mathrm{x}+1), \mathrm{I}[1]=1$
- Elem 1 in subset, choose $k-1$ elems from remaining $n-1$
- By IH: rSubset returns subset S' of size $\mathrm{k}-1$ with $\mathrm{p}=1 /\binom{n-1}{k-1}$ $\mathrm{P}\left(\mathrm{I}[1]=1\right.$, subset $\left.\mathrm{S}^{\prime}\right)=\frac{k}{n} \cdot 1 /\binom{n-1}{k-1}=1 /\binom{n}{k}$
- Case 2: (where $\mathrm{k}+\mathrm{n} \leq \mathrm{c}+1$) $|\mathrm{S}|=\mathrm{n}(=\mathrm{x}+1), \mathrm{I}[1]=0$
- Elem 1 not in subset, choose k elems from remaining $n-1$
- By IH: rSubset returns subset S ' of size k with $\mathrm{p}=1 /\binom{n-1}{k}$
- $\mathrm{P}\left([1]=0\right.$, subset $\left.\mathrm{S}^{\prime}\right)=\left(1-\frac{k}{n}\right) \cdot 1 /\binom{n-1}{k}=\left(\frac{n-k}{n}\right) \cdot 1 /\binom{n-1}{k}=1 /\binom{n}{k}$

