The Questions of Our Time

- Y is a non-negative continuous random variable
- Probability Density Function: $f_{Y}(y)$
- Already knew that:

$$
E[Y]=\int_{-\infty}^{\infty} y f_{Y}(y) d y
$$

- But, did you know that:

$$
E[Y]=\int_{0}^{\infty} P(Y>y) d y \text { ?!? }
$$

- No, I didn't think so...
- Analogously, in the discrete case, where $X=1,2, \ldots, n$

$$
E[X]=\sum_{i=1}^{n} P(X \geq i)
$$

Discrete Joint Mass Functions

- For two discrete random variables X and Y, the Joint Probability Mass Function is:

$$
p_{X, Y}(a, b)=P(X=a, Y=b)
$$

- Marginal distributions:

$$
\begin{gathered}
p_{X}(a)=P(X=a)=\sum_{y} p_{X, Y}(a, y) \\
p_{Y}(b)=P(Y=b)=\sum_{x} p_{X, Y}(x, b)
\end{gathered}
$$

- Example: $\mathrm{X}=$ value of die $\mathrm{D}_{1}, \mathrm{Y}=$ value of die D_{2}

$$
P(X=1)=\sum_{y=1}^{6} p_{X, Y}(1, y)=\sum_{y=1}^{6} \frac{1}{36}=\frac{1}{6}
$$

Continuous Joint Distribution Functions

- For two continuous random variables X and Y, the Joint Cumulative Probability Distribution is:

$$
F_{X, Y}(a, b)=F(a, b)=P(X \leq a, Y \leq b) \quad \text { where }-\infty<a, b<\infty
$$

- Marginal distributions:

$$
\begin{aligned}
& F_{X}(a)=P(X \leq a)=\mathrm{P}(X \leq a, Y<\infty)=F_{X, Y}(a, \infty) \\
& F_{Y}(b)=P(Y \leq b)=\mathrm{P}(X<\infty, Y \leq b)=F_{X, Y}(\infty, b)
\end{aligned}
$$

- Let's look at one:

Demo

Life Gives You Lemmas, Make Lemma-nade!

- A lemma in the home or office is a good thing

- Proof:
$\int_{y=0}^{\infty} P(Y>y) d y=\int_{y=0}^{\infty} \int_{x=y}^{\infty} f_{Y}(x) d x d y$
$=\int_{x=0}^{\infty}\left(\int_{y=0}^{x} d y\right) f_{Y}(x) d x=\int_{x=0}^{\infty} x f_{Y}(x) d x=E[Y]$

A Computer (or Three) in Every House

- Consider households in Silicon Valley
- A household has C computers: C = X Macs + Y PCs
- Assume each computer equally likely to be Mac or PC
- This is a joint

- A joint is not a mathematician
- It did not start doing mathematics at an early age
- It is not the reason we have "joint distributions"
- And, no, Charlie Sheen does not look like a joint - But he does have them...
- He also has joint custody of his children with Denise Richards

Computing Joint Probabilities

- Let $F_{X, Y}(x, y)$ be joint CDF for X and Y
$\mathrm{P}(X>a, Y>b)=1-P\left((X>a, Y>b)^{c}\right)$
$=1-P\left((X>a)^{c} \cup(Y>b)^{c}\right)$
$=1-P((X \leq a) \cup(Y \leq b))$
$=1-(P(X \leq a)+P(Y \leq b)-P(X \leq a, Y \leq b))$
$=1-F_{X}(a)-F_{Y}(b)+F_{X, Y}(a, b)$

$$
\mathrm{P}\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)
$$

$$
=F\left(a_{2}, b_{2}\right)-F\left(a_{1}, b_{2}\right)+F\left(a_{1}, b_{1}\right)-F\left(a_{2}, b_{1}\right)
$$

Jointly Continuous

- Random variables X and Y, are Jointly Continuous if there exists $\operatorname{PDF} \overline{f_{X, Y}(x, y)}$ defined over $-\infty<x, y<\infty$ such that:
$\mathrm{P}\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)=\int_{a_{1}}^{a_{2}} \int_{b_{1}}^{b_{2}} f_{X, Y}(x, y) d y d x$
- Cumulative Density Function (CDF):
$F_{X, Y}(a, b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f_{X, Y}(x, y) d y d x \quad f_{X, Y}(a, b)=\frac{\partial^{2}}{\partial a \partial b} F_{X, Y}(a, b)$
- Marginal density functions:

$$
f_{X}(a)=\int_{-\infty}^{\infty} f_{X, Y}(a, y) d y \quad f_{Y}(b)=\int_{-\infty}^{\infty} f_{X, Y}(x, b) d x
$$

Welcome Back the Multinomial!

- Multinomial distribution
- n independent trials of experiment performed
- Each trial results in one of m outcomes, with respective probabilities: $p_{1}, p_{2}, \ldots, p_{m}$ where $\sum_{i=1}^{m} p_{i}=1$
- $X_{i}=$ number of trials with outcome i
$P\left(X_{1}=c_{1}, X_{2}=c_{2}, \ldots, X_{m}=c_{m}\right)=\binom{n}{c_{1}, c_{2}, \ldots, c_{m}} p_{1}^{c_{1}} p_{2}^{c_{2}} \ldots p_{m}^{c_{m}}$
where $\sum_{i=1}^{m} c_{i}=n$ and $\binom{n}{c_{1}, c_{2}, \ldots, c_{m}}=\frac{n!}{c_{1}!c_{2}!\cdots c_{m}!}$
- Distance to origin: $D=\sqrt{X^{2}+Y^{2}}, P(D \leq a)=\frac{\pi a^{2}}{\pi R^{2}}=\frac{a^{2}}{R^{2}}$

Imperfection on a Disk

- Disk surface is a circle of radius R
- A single point imperfection uniformly distributed on disk
$f_{X, Y}(x, y)=\left\{\begin{array}{ll}\frac{1}{\pi R^{2}} & \text { if } x^{2}+y^{2} \leq R^{2} \\ 0 & \text { if } x^{2}+y^{2}>R^{2}\end{array}\right.$ where $-\infty<x, y<\infty$ $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\frac{1}{\pi R^{2}} \int_{x^{2}+y^{2} \leq R^{2}} d y=\frac{1}{\pi R^{2}} \int_{y=-\sqrt{R^{2}-x^{2}}}^{\sqrt{R^{2}-x^{2}}} d y=\frac{2 \sqrt{R^{2}-x^{2}}}{\pi R^{2}}$ $f_{Y}(y)=\frac{2 \sqrt{R^{2}-y^{2}}}{\pi R^{2}}$ where $-R \leq y \leq R$, by symmetry

$$
E[D]=\int_{0}^{R} P(D>a) d a=\int_{0}^{R}\left(1-\frac{a^{2}}{R^{2}}\right) d a=\left.\left(a-\frac{a^{3}}{3 R^{2}}\right)\right|_{0} ^{R}=\frac{2 R}{3}
$$

- 6 -sided die is rolled 7 times
- Roll results: 1 one, 1 two, 0 three, 2 four, 0 five, 3 six

$$
\begin{aligned}
& P\left(X_{1}=1, X_{2}=1, X_{3}=0, X_{4}=2, X_{5}=0, X_{6}=3\right) \\
& \quad=\frac{7!}{1!1!0!2!0!3!}\left(\frac{1}{6}\right)^{1}\left(\frac{1}{6}\right)^{1}\left(\frac{1}{6}\right)^{0}\left(\frac{1}{6}\right)^{2}\left(\frac{1}{6}\right)^{0}\left(\frac{1}{6}\right)^{3}=420\left(\frac{1}{6}\right)^{7}
\end{aligned}
$$

- This is generalization of Binomial distribution
- Binomial: each trial had 2 possible outcomes
- Multinomial: each trial has m possible outcomes

Probabilistic Text Analysis

- Ignoring order of words, what is probability of any given word you write in English?
- $\mathrm{P}($ word $=$ "the" $)>\mathrm{P}($ word $=$ "transatlantic" $)$
- $\mathrm{P}($ word $=$ "Stanford" $)>\mathrm{P}($ word $=$ "Cal" $)$
- Probability of each word is just multinomial distribution
- What about probability of those same words in someone else's writing?
- $\mathrm{P}($ word $=$ "probability" | writer = you $)>$

P(word = "probability" | writer = non-CS109 student)

- After estimating P (word | writer) from known writings, use Bayes Theorem to determine P (writer | word) for new writings!

Old and New Analysis

- Authorship of "Federalist Papers"
- 85 essays advocating ratification of US constitution
- Written under pseudonym "Publius"
- Really, Alexander Hamilton, James Madison and John Jay
- Who wrote which essays?
- Analyzed probability of words in each essay versus word distributions from known writings of three authors
- Filtering Spam

- $\mathrm{P}($ word $=$ "Viagra" \mid writer $=$ you $)$
<< P(word = "Viagra" | writer = spammer)

