Likelihood of Data

- Consider n I.I.D. random variables $X_{1}, X_{2}, \ldots, X_{n}$
- X_{i} a sample from density function $f\left(X_{i} \mid \theta\right)$
- Note: now explicitly specify parameter θ of distribution
- We want to determine how "likely" the observed data $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is based on density $f\left(X_{i} \mid \theta\right)$
- Define the Likelihood function, $L(\theta)$:

$$
L(\theta)=\prod_{i=1}^{n} f\left(X_{i} \mid \theta\right)
$$

- This is just a product since X_{i} are I.I.D.
- Intuitively: what is probability of observed data using density function $f\left(\mathrm{X}_{i} \mid \theta\right)$, for some choice of θ

Maximum Likelihood Estimator

- The Maximum Likelihood Estimator (MLE) of θ, is the value of θ that maximizes $L(\theta)$
- More formally: $\theta_{\text {MLE }}=\arg \max L(\theta)$
- More convenient to use log-likelihood function, $L L(\theta)$:

$$
L L(\theta)=\log L(\theta)=\log \prod_{i=1}^{n} f\left(X_{i} \mid \theta\right)=\sum_{i=1}^{n} \log f\left(X_{i} \mid \theta\right)
$$

- Note that log function is "monotone" for positive values

。Formally: $x \leq y \Leftrightarrow \log (x) \leq \log (y)$ for all $x, y>0$

- So, θ that maximizes $L L(\theta)$ also maximizes $L(\theta)$
- Formally: $\underset{\theta}{\arg \max } L L(\theta)=\underset{\theta}{\arg \max } L(\theta)$
- Similarly, for any positive constant c (not dependent on θ): $\arg \max (c \cdot L L(\theta))=\arg \max L L(\theta)=\arg \max L(\theta)$

Computing the MLE

- General approach for finding MLE of θ
- Determine formula for $L L(\theta)$
- Differentiate $L L(\theta)$ w.r.t. (each) $\theta: \frac{\partial L L(\theta)}{\partial \theta}$
- To maximize, set $\frac{\partial L L(\theta)}{\partial \theta}=0$
- Solve resulting (simultaneous) equation to get $\theta_{\text {MLE }}$
- Make sure that derived $\hat{\theta}_{\text {MLE }}$ is actually a maximum (and not a minimum or saddle point). E.g., check $L L\left(\theta_{M L E} \pm \varepsilon\right)<L L\left(\theta_{\text {MLE }}\right)$
- This step often ignored in expository derivations
- So, we'll ignore it here too (and won't require it in this class)
- For many standard distributions, someone has already done this work for you. (Yay!)

Maximizing Likelihood with Bernoulli

- Consider I.I.D. random variables $X_{1}, X_{2}, \ldots, X_{n}$
- $X_{i} \sim \operatorname{Ber}(p)$
- Probability mass function, $f\left(X_{i} \mid \mathrm{p}\right)$, can be written as:

$$
f\left(X_{i} \mid p\right)=p^{x_{i}}(1-p)^{1-x_{i}} \quad \text { where } x_{i}=0 \text { or } 1
$$

- Likelihood: $L(\theta)=\prod_{i=1}^{n} p^{X_{i}}(1-p)^{1-X_{i}}$
- Log-likelihood:

$$
\begin{aligned}
L L(\theta) & =\sum_{i=1}^{n} \log \left(p^{X_{i}}(1-p)^{1-X_{i}}\right)=\sum_{i=1}^{n}\left[X_{i}(\log p)+\left(1-X_{i}\right) \log (1-p)\right] \\
& =Y(\log p)+(n-Y) \log (1-p) \quad \text { where } Y=\sum_{i=1}^{n} X_{i}
\end{aligned}
$$

- Differentiate w.r.t. p, and set to 0 :
$\frac{\partial L L(p)}{\partial p}=Y \frac{1}{p}+(n-Y) \frac{-1}{1-p}=0 \Rightarrow p_{M L E}=\frac{Y}{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$

Maximizing Likelihood with Normal

- Consider I.I.D. random variables $X_{1}, X_{2}, \ldots, X_{n}$
- $X_{i} \sim N\left(\mu, \sigma^{2}\right)$
- PDF: $f\left(X_{i} \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\left(X_{i}-\mu\right)^{2} /\left(2 \sigma^{2}\right)}$
- Log-likelihood:
$L L(\theta)=\sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2 \pi} \sigma} e^{-\left(X_{i}-\mu\right)^{2} /\left(2 \sigma^{2}\right)}\right)=\sum_{i=1}^{n}\left[-\log (\sqrt{2 \pi} \sigma)-\left(X_{i}-\mu\right)^{2} /\left(2 \sigma^{2}\right)\right]$
- First, differentiate w.r.t. μ, and set to 0 :

$$
\frac{\partial L L\left(\mu, \sigma^{2}\right)}{\partial \mu}=\sum_{i=1}^{n} 2\left(X_{i}-\mu\right) /\left(2 \sigma^{2}\right)=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\mu\right)=0
$$

- Then, differentiate w.r.t. σ, and set to 0 :
$\frac{\partial L L\left(\mu, \sigma^{2}\right)}{\partial \sigma}=\sum_{i=1}^{n}-\frac{1}{\sigma}+2\left(X_{i}-\mu\right)^{2} /\left(2 \sigma^{3}\right)=-\frac{n}{\sigma}+\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} /\left(\sigma^{3}\right)=0$

Being Normal, Simultaneously

- Now have two equations, two unknowns:

$$
\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\mu\right)=0 \quad-\frac{n}{\sigma}+\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} /\left(\sigma^{3}\right)=0
$$

- First, solve for $\mu_{\text {MLE }}$:

$$
\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\mu\right)=0 \Rightarrow \sum_{i=1}^{n} X_{i}=n \mu \Rightarrow \mu_{M L E}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

- Then, solve for $\sigma^{2}{ }_{\text {MLE }}$:

$$
\begin{gathered}
-\frac{n}{\sigma}+\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} /\left(\sigma^{3}\right)=0 \Rightarrow n \sigma^{2}=\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} \\
\sigma_{\text {MLE }}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu_{M L E}\right)^{2}
\end{gathered}
$$

- Note: $\mu_{\text {MLE }}$ unbiased, but σ^{2} MLE biased (same as MOM)

Maximizing Likelihood with Uniform

- Consider I.I.D. random variables $X_{1}, X_{2}, \ldots, X_{n}$ - $X_{i} \sim \operatorname{Uni}(a, b)$
- PDF: $f\left(X_{i} \mid a, b\right)=\left\{\begin{array}{cc}\frac{1}{b-a} & a<x_{i}<b \\ 0 & \text { otherwise }\end{array}\right.$
- Likelihood: $L(\theta)=\left\{\begin{array}{cl}\left(\frac{1}{b-a}\right)^{n} & a<x_{1}, x_{2}, \ldots, x_{n}<b \\ 0 & \text { otherwise }\end{array}\right.$
- Constraint $a<\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{n}<b$ makes differentiation tricky

Intuition: want interval size $(\mathrm{b}-\mathrm{a})$ to be as small as possible to maximize likelihood function for each data point
But need to make sure all observed data contained in interval - If all observed data not in interval, then $L(\theta)=0$

- Solution: $a_{M L E}=\min \left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \quad b_{\text {MLE }}=\max \left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$

Understanding MLE with Uniform

- Consider I.I.D. random variables $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$
- $X_{i} \sim \operatorname{Uni}(0,1)$
- Observe data:
- $0.15,0.20,0.30,0.40,0.65,0.70,0.75$

Likelihood: L(a,1)

Properties of MLE

- Maximum Likelihood Estimators are generally:
- Consistent: $\lim _{n \rightarrow \infty} P(|\hat{\theta}-\theta|<\varepsilon)=1$ for $\varepsilon>0$
- Potentially biased (though asymptotically less so)
- Asymptotically optimal
- Has smallest variance of "good" estimators for large samples
- Often used in practice where sample size is large relative to parameter space
- But be careful, there are some very large parameter spaces - Joint distributions of several variables can cause problems
- Parameter space grows exponentially
- Parameter space for 10 dependent binary variables $\approx 2^{10}$

Once Again, Small Samples = Problems

- How do small samples effect MLE?
- In many cases, $\mu_{\text {MLE }}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=$ sample mean。Unbiased. Not too shabby...
- As seen with Normal, $\sigma_{\text {MLE }}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu_{M L E}\right)^{2}$ - Biased. Underestimates for small n (e.g., 0 for $\mathrm{n}=1$)
- As seen with Uniform, $a_{M L E} \geq a$ and $b_{M L E} \leq b$ - Biased. Problematic for small n (e.g., $a=b$ when $n=1$)
- Small sample phenomena intuitively make sense:
- Maximum likelihood \Rightarrow best explain data we've seen
- Does not attempt to generalize to unseen data

Maximizing Likelihood with Multinomial

- Consider I.I.D. random variables $Y_{1}, Y_{2}, \ldots, Y_{n}$
- $\mathrm{Y}_{k} \sim \operatorname{Multinomial}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{m}}\right)$, where $\sum_{i=1}^{m} \mathrm{p}_{i}=1$
- $X_{i}=$ number of trials with outcome i where $\sum_{i=1}^{m} \mathrm{X}_{i}=\mathrm{n}$
- PDF: $f\left(X_{1}, \ldots, X_{m} \mid p_{1}, \ldots, p_{m}\right)=\frac{n!}{x_{1} \mid x_{2}!\cdots x_{m}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \ldots p_{m}^{x_{m}}$
- Log-likelihood: $L L(\theta)=\log (n!)-\sum_{i=1}^{m} \log \left(X_{i}!\right)+\sum_{i=1}^{m} X_{i} \log \left(p_{i}\right)$
- Account for constraint $\sum_{i=1}^{m} \mathbf{p}_{i}=1$ when differentiating $L L(\theta)$
- Use Lagrange multipliers (drop non- p_{i} terms):

$$
A(\theta)=\sum_{i=1}^{m} X_{i} \log \left(p_{i}\right)+\lambda\left(\sum_{i=1}^{m} p_{i}-1\right)
$$

Home on Lagrange

- Want to maximize:

$$
A(\theta)=\sum_{i=1}^{m} X_{i} \log \left(p_{i}\right)+\lambda\left(\sum_{i=1}^{m} p_{i}-1\right)
$$

- Differentiate w.r.t. each p_{i}, in turn:

$$
\frac{\partial A(\theta)}{\partial p_{i}}=X_{i} \frac{1}{p_{i}}+\lambda=0 \Rightarrow p_{i}=\frac{-X_{i}}{\lambda}
$$

- Solve for λ, noting $\sum_{i=1}^{m} \mathrm{X}_{i}=\mathrm{n}$ and $\sum_{i=1}^{m} \mathrm{p}_{i}=1$:

$$
\sum_{i=1}^{m} p_{i}=\sum_{i=1}^{m} \frac{-X_{i}}{\lambda} \Rightarrow 1=\frac{-n}{\lambda} \Rightarrow \lambda=-n
$$

- Substitute λ into p_{i}, yielding: $p_{i}=\frac{X_{i}}{n}$
- Intuitive result: probability $\mathrm{p}_{i}=$ proportion of outcome i

When MLE's Attack!

- Consider 6-sided die
- $X \sim \operatorname{Multinomial}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right)$
- Roll $n=12$ times
- Result: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes
- Consider MLE for p_{i} :

$$
\circ p_{1}=3 / 12, p_{2}=2 / 12, p_{3}=0 / 12, p_{4}=3 / 12, p_{5}=1 / 12, p_{6}=3 / 12
$$

- Based on estimate, infer that you will never roll a three
- Do you really believe that?
- Frequentist: Need to roll more! Probability = frequency in limit
. Bayesian: Have prior beliefs of probability, even before any rolls!

Two Envelopes

- I have two envelopes, will allow you to have one
- One contains \$X, the other contains \$2X
- Select an envelope - Open it!
- Now, would you like to switch for other envelope?
- To help you decide, compute $\mathrm{E}[\$$ in other envelope] Let $\mathrm{Y}=\$$ in envelope you selected $E[\$$ in other envelope $]=\frac{1}{2} \cdot \frac{Y}{2}+\frac{1}{2} \cdot 2 Y=\frac{5}{4} Y$
- Before opening envelope, think either equally good
- So, what happened by opening envelope?
-And does it really make sense to switch?

