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Likelihood of Data

• Consider n I.I.D. random variables X1, X2, ..., Xn

 Xi a sample from density function f(Xi | )

o Note: now explicitly specify parameter  of distribution

 We want to determine how “likely” the observed data  

(x1, x2, ..., xn) is based on density f(Xi | )

 Define the Likelihood function, L():

o This is just a product since Xi are I.I.D.

 Intuitively: what is probability of observed data using 

density function f(Xi | ), for some choice of 
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Maximum Likelihood Estimator

• The Maximum Likelihood Estimator (MLE) of , 

is the value of  that maximizes L()

 More formally:

 More convenient to use log-likelihood function, LL():

 Note that log function is “monotone” for positive values

o Formally: x ≤ y  log(x) ≤ log(y) for all x, y > 0

 So,  that maximizes LL() also maximizes L()

o Formally:

o Similarly, for any positive constant  c (not dependent on ):
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Computing the MLE

• General approach for finding MLE of 

 Determine formula for LL()

 Differentiate LL() w.r.t. (each)  :

 To maximize, set

 Solve resulting (simultaneous) equation to get MLE

o Make sure that derived         is actually a maximum (and not a 

minimum or saddle point).  E.g., check LL(MLE ) < LL(MLE) 

• This step often ignored in expository derivations

• So, we’ll ignore it here too (and won’t require it in this class)

 For many standard distributions, someone has already 

done this work for you.  (Yay!)
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Maximizing Likelihood with Bernoulli

• Consider I.I.D. random variables X1, X2, ..., Xn

 Xi ~ Ber(p)

 Probability mass function, f(Xi | p), can be written as: 

 Likelihood:

 Log-likelihood:

 Differentiate w.r.t. p, and set to 0:
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Maximizing Likelihood with Poisson

• Consider I.I.D. random variables X1, X2, ..., Xn

 Xi ~ Poi(l)

 PMF: Likelihood:

 Log-likelihood:

 Differentiate w.r.t. l, and set to 0:
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Maximizing Likelihood with Normal

• Consider I.I.D. random variables X1, X2, ..., Xn

 Xi ~ N(m, 2)

 PDF:

 Log-likelihood:

 First, differentiate w.r.t. m, and set to 0:

 Then, differentiate w.r.t. , and set to 0:
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Being Normal, Simultaneously

 Now have two equations, two unknowns:

 First, solve for mMLE:

 Then, solve for 2
MLE:

 Note: mMLE unbiased, but 2
MLE biased (same as MOM)
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Maximizing Likelihood with Uniform

• Consider I.I.D. random variables X1, X2, ..., Xn

 Xi ~ Uni(a, b)

 PDF:

 Likelihood:

o Constraint a < x1, x2, …, xn < b makes differentiation tricky

o Intuition: want interval size (b – a) to be as small as possible to 

maximize likelihood function for each data point

o But need to make sure all observed data contained in interval

• If all observed data not in interval, then L() = 0

 Solution: aMLE = min(x1, …, xn)    bMLE = max(x1, …, xn)
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Understanding MLE with Uniform

• Consider I.I.D. random variables X1, X2, ..., Xn

 Xi ~ Uni(0, 1)

 Observe data:

o 0.15, 0.20, 0.30, 0.40, 0.65, 0.70, 0.75

Likelihood: L(a,1)

a

L(a,1)

Likelihood: L(0, b)

b

L(0, b)

Once Again, Small Samples = Problems

• How do small samples effect MLE?

 In many cases,                      = sample mean 

o Unbiased.  Not too shabby…

 As seen with Normal,

o Biased.  Underestimates for small n (e.g., 0 for n = 1)

 As seen with Uniform, aMLE ≥ a and bMLE ≤ b

o Biased.  Problematic for small n (e.g., a = b when n = 1)

 Small sample phenomena intuitively make sense:

o Maximum likelihood  best explain data we’ve seen

o Does not attempt to generalize to unseen data
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Properties of MLE

• Maximum Likelihood Estimators are generally:

 Consistent:                                    for  > 0

 Potentially biased (though asymptotically less so)

 Asymptotically optimal

o Has smallest variance of “good” estimators for large samples

 Often used in practice where sample size is large 

relative to parameter space

o But be careful, there are some very large parameter spaces

o Joint distributions of several variables can cause problems

• Parameter space grows exponentially

• Parameter space for 10 dependent binary variables  210
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Maximizing Likelihood with Multinomial

• Consider I.I.D. random variables Y1, Y2, ..., Yn

 Yk ~ Multinomial(p1, p2, ..., pm), where 

 Xi = number of trials with outcome i where

 PDF:

 Log-likelihood:

 Account for constraint               when differentiating LL()

 Use Lagrange multipliers (drop non-pi terms):
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Joseph-Louis Lagrange

(1736-1813)

Rock on, dog!

http://upload.wikimedia.org/wikipedia/commons/f/ff/Joseph_Louis_Lagrange.jpg
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Home on Lagrange

• Want to maximize:

 Differentiate w.r.t. each pi, in turn:

 Solve for l, noting                 and                :

 Substitute l into pi, yielding:

 Intuitive result: probability pi = proportion of outcome i
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When MLE’s Attack!

• Consider 6-sided die

 X ~ Multinomial(p1, p2, p3, p4, p5, p6)

 Roll n = 12 times

 Result: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

 Consider MLE for pi:

o p1 = 3/12, p2 = 2/12, p3 = 0/12, p4 = 3/12, p5 = 1/12, p6 = 3/12

 Based on estimate, infer that you will never roll a three

 Do you really believe that?

o Frequentist: Need to roll more!  Probability = frequency in limit

o Bayesian: Have prior beliefs of probability, even before any rolls!

Need a Volunteer

So good to see 

you again!

Two Envelopes

• I have two envelopes, will allow you to have one

 One contains $X, the other contains $2X

 Select an envelope

o Open it!

 Now, would you like to switch for other envelope?

 To help you decide, compute E[$ in other envelope]

o Let Y = $ in envelope you selected

 Before opening envelope, think either equally good

 So, what happened by opening envelope?

o And does it really make sense to switch?
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