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Whither the Binomial…

• Recall example of sending bit string over network

 n = 4 bits sent over network where each bit had 

independent probability of corruption p = 0.1

 X = number of bit corrupted.  X ~ Bin(4, 0.1)

 In real networks, send large bit strings (length n  104)

 Probability of bit corruption is very small p  10-6

 X ~ Bin(104, 10-6) is unwieldy to compute

• Extreme n and p values arise in many cases

 # bit errors in file written to disk (# of typos in a book)

 # of elements in particular bucket of large hash table

 # of servers crashes in a day in giant data center

 # Facebook login requests that go to particular server

Binomial in the Limit

• Recall the Binomial distribution

• Let l = np (equivalently: p = l/n)

• When n is large, p is small, and l is “moderate”:

• Yielding:
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Poisson Random Variable

• X is a Poisson Random Variable:  X ~ Poi(l)

 X takes on values 0, 1, 2…

 and, for a given parameter l > 0,

 has distribution (PMF):

• Note Taylor series:

• So:
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Sending Data on Network Redux

• Recall example of sending bit string over network

 Send bit string of length n = 104

 Probability of (independent) bit corruption p = 10-6

 X ~ Poi(l = 104 * 10-6 = 0.01)

 What is probability that message arrives uncorrupted?

 Using Y ~ Bin(10
4
, 10-6):
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Caveat emptor: Binomial computed with built-in function in R software 

package, so some approximation may have occurred.  Approximation 

are closer to you than they may appear in some software packages.

Simeon-Denis Poisson

• Simeon-Denis Poisson (1781-1840) was a prolific 

French mathematician

• Published his first paper at 18, became professor 

at 21, and published over 300 papers in his life

 He reportedly said “Life is good for only two things, 

discovering mathematics and teaching mathematics.”

• Definitely did not look like Charlie Sheen

Poisson Random is Binomial in Limit

• Poisson approximates Binomial where n is large, 

p is small, and l = np is “moderate”

• Different interpretations of "moderate" 

 n > 20 and p < 0.05

 n > 100 and p < 0.1

• Really, Poisson is Binomial as

n  and p 0, where np = l

http://upload.wikimedia.org/wikipedia/commons/b/b7/Simeon_Poisson.jpg
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Bin(10, 0.3), Bin(100, 0.03) vs. Poi(3)

P(X = k)

k

Tender (Central) Moments with Poisson

• Recall: Y ~ Bin(n, p)

 E[Y] = np

 Var(Y) = np(1 – p)

• X ~ Poi(l) where l = np (n   and p 0)

 E[X] = np = l

 Var(X) = np(1 – p) = l(1 – 0) = l

 Yes, expectation and variance of Poisson are same

o It brings a tear to my eye…

 Recall: Var(X) = E[X2] – (E[X])2

 E[X2] = Var(X) + (E[X])2 = l + l2 = l(1 + l)

It’s Really All About Raisin Cake

• Bake a cake using many raisins and lots of batter

• Cake is enormous (in fact, infinitely so…)

 Cut slices of “moderate” size (w.r.t. # raisins/slice)

 Probability p that a particular raisin is in a certain slice 

is very small (p = 1/# cake slices)

• Let X = number of raisins in a certain cake slice

• X ~ Poi(l), where
slices cake #

raisins #
l

CS = Baking Raisin Cake With Code

• Hash tables

 strings = raisins

 buckets = cake slices

• Server crashes in data center

 servers = raisins

 list of crashed machines = particular slice of cake

• Facebook login requests (i.e., web server requests)

 requests = raisins

 server receiving request = cake slice

Defective Chips

• Computer chips are produced 

 p = 0.1 that a chip is defective

 Consider a sample of n = 10 chips

 What is P(sample contains  1 defective chip)?

 Using Y ~ Bin(10, 0.1):

 Using X ~ Poi(l = (0.1)(10) = 1)
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Efficiently Computing Poisson

• Let X ~ Poi(l)

 Want to compute P(X = i) for multiple values of i

 E.g., Computing

• Iterative formulation:

 Compute P(X = i + 1) from P(X = i)

 Use recurrence relation:
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Approximately Poisson Approximation

• Poisson can still provide good approximation 

even when assumptions “mildly” violated

• “Poisson Paradigm”

• Can apply Poisson approximation when...

 “Successes” in trials are not entirely independent

o Example: # entries in each bucket in large hash table

 Probability of “Success” in each trial varies (slightly)

o Small relative change in a very small p

o Example: average # requests to web server/sec. may fluctuate 

slightly due to load on network

Birthday Problem Redux

• What is the probability that of n people, none share 

the same birthday (regardless of year)?

 n = trials, one for each pair of people (x, y), x  y

 Let Ex,y = x and y have same birthday (trial success)

 P(Ex,y) = p = 1/365 (note: all Ex,y not independent)

 X ~ Poi(l) where

 Solve for smallest integer n, s.t.:

 Same as before! 
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Poisson Processes

• Consider “rare” events that occur over time

 Earthquakes, radioactive decay, hits to web server, etc.

 Have time interval for events (1 year, 1 sec, whatever...)

 Events arrive at rate: l events per interval of time

• Split time interval into  n   sub-intervals

 Assume at most one event per sub-interval

 Event occurrences in sub-intervals are independent

 With many sub-intervals, probability of event occurring  

in any given sub-interval is small

• N(t) = # events in original time interval ~ Poi(l)

Web Server Load

• Consider requests to a web server in 1 second

 In past, server load averages 2 hits/second

 X = # hits server receives in a second

 What is P(X = 5)?

• Model

 Assume server cannot acknowledge > 1 hit/msec.

 1 sec = 1000 msec. (= large n)

 P(hit server in 1 msec) = 2/1000 (= small p)

 X ~ Poi(l = 2)
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Geometric Random Variable

• X is Geometric Random Variable:  X ~ Geo(p)

 X is number of independent trials until first success

 p is probability of success on each trial

 X takes on values 1, 2, 3, …, with probability:

 E[X] = 1/p Var(X) = (1 – p)/p2

• Examples:

 Flipping a fair (p = 0.5) coin until first “heads” appears. 

 Urn with N black and M white balls.  Draw balls (with 

replacement, p = N/(N + M)) until draw first black ball.

 Generate bits with P(bit = 1) = p until first 1 generated

ppnXP n 1)1()( 

Negative Binomial Random Variable

• X is Negative Binomial RV:  X ~ NegBin(r, p)

 X is number of independent trials until r successes

 p is probability of success on each trial

 X takes on values r, r + 1, r + 2…, with probability:

 E[X] = r/p Var(X) = r (1 – p)/p2

• Note: Geo(p) ~ NegBin(1, p)

• Examples:

 # of coin flips until r-th “heads” appears

 # of strings to hash into table until bucket 1 has r entries
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Hypergeometric Random Variable

• X is Hypergeometric RV:  X ~ HypG(n, N, m)

 Urn with N balls: (N – m) black and m white.

 Draw n balls without replacement

 X is number of white balls drawn

 E[X] = n(m/N) Var(X) = nm(N – n)(N – m)/N2(N – 1)

 Let p = m/N (probability of drawing white on 1st draw)

• Note: HypG(n, N, m)  Bin(n, m/N) 

 As n   and m/N remains constant
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Endangered Species

• Determine N = how many of some species remain

 Randomly tag m of species (e.g., with white paint)

 Allow animals to mix randomly (assuming no breeding)

 Later randomly observe another n of the species

 X = number of tagged animals in observed group of n

 X ~ HypG(n, N, m)

• “Maximum Likelihood” estimate

 Set N to be value that maximizes:

for the value i of X that you observed  =  mn/i

• Similar to assuming: i = E[X] = nm/N
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