
1

Sum of Independent Binomial RVs

• Let X and Y be independent random variables

 X ~ Bin(n1, p) and  Y ~ Bin(n2, p) 

 X + Y ~ Bin(n1 + n2, p)

• Intuition:

 X has n1 trials and Y has n2 trials

o Each trial has same “success” probability p

 Define Z to be n1 + n2 trials, each with success prob. p

 Z ~ Bin(n1 + n2, p), and also Z = X + Y

• More generally: Xi ~ Bin(ni, p) for 1  i  N
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Sum of Independent Poisson RVs

• Let X and Y be independent random variables

 X ~ Poi(l1)  and  Y ~ Poi(l2)

 X + Y ~ Poi(l1 + l2) 

• Proof: (just for reference)

 Rewrite (X + Y = n) as (X = k, Y = n – k) where 0  k  n

 Noting Binomial coefficient: 

 so, X + Y = n ~ Poi(l1 + l2)
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Dance, Dance, Convolution

• Let X and Y be independent random variables

 Cumulative Distribution Function (CDF) of X + Y:

 FX+Y is called convolution of FX and FY

 Probability Density Function (PDF) of X + Y, analogous:

 In discrete case, replace    with     , and f(y) with p(y)
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Sum of Independent Uniform RVs

• Let X and Y be independent random variables

 X ~ Uni(0, 1)  and  Y ~ Uni(0, 1)   f(a) = 1 for 0  a  1

 What is PDF of X + Y?

 When 0  a  1 and 0  y  a, 0  a–y  1  fX(a – y) = 1

 When 1 < a < 2 and a–1  y  1, 0  a–y  1  fX(a – y) = 1

 Combining:
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Sum of Independent Normal RVs

• Let X and Y be independent random variables

 X ~ N(m1, s1
2)  and  Y ~ N(m2, s2

2)

 X + Y ~ N(m1 + m2, s1
2 + s2

2) 

• Generally, have n independent random variables     

Xi ~ N(mi, si
2)  for  i = 1, 2, ..., n:
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Virus Infections

• Say your RCC checks dorm machines for viruses

 50 Macs, each independently infected with p = 0.1

 100 PCs, each independently infected with p = 0.4

 A = # infected Macs A ~ Bin(50, 0.1)    X ~ N(5, 4.5)

 B = # infected PCs B ~ Bin(100, 0.4)  Y ~ N(40, 24)

 What is P(≥ 40 machine infected)?

 P(A + B ≥ 40)  P(X + Y ≥ 39.5)

 X + Y = W ~ N(5 + 40 = 45, 4.5 + 24 = 28.5)

• Be glad it’s not swine flu!
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Discrete Conditional Distributions

• Recall that for events E and F:

• Now, have X and Y as discrete random variables

 Conditional PMF of X given Y  (where pY(y) > 0):

 Conditional CDF of X given Y  (where pY(y) > 0):
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• Consider person buying 2 computers (over time)

 X = 1st computer bought is a PC (1 if it is, 0 if it is not)

 Y = 2nd computer bought is a PC (1 if it is, 0 if it is not)

 Joint probability mass function (PMF):

 What is P(Y = 0 | X = 0)?

 What is P(Y = 1 | X = 0)?

 What is P(X = 0 | Y = 1)?
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And It Applies to Books Too…

P(Buy Book Y | Bought Book X)

• Requests received at web server in a day

 X = # requests from humans/day X ~ Poi(l1)

 Y = # requests from bots/day Y ~ Poi(l2)

 X and Y are independent   X + Y ~ Poi(l1 + l2)

 What is P(X = k | X + Y = n)?

 X | X + Y ~  

Web Server Requests Redux
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Continuous Conditional Distributions

• Let X and Y be continuous random variables

 Conditional PDF of X given Y  (where fY(y) > 0):

 Conditional CDF of X given Y  (where fY(y) > 0):

 Note: Even though P(Y = a) = 0, can condition on Y = a

o Really considering: 
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• X and Y are continuous RVs with PDF:

 Compute conditional density:

Let’s Do an Example
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Independence and Conditioning

• If X and Y are independent discrete RVs:

• Analogously, for independent continuous RVs:
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Conditional Independence Revisited

• n discrete random variables X1, X2, …, Xn are 

called conditionally independent given Y if:

• Analogously, for continuous random variables:

• Note: can turn products into sums using logs:
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Mixing Discrete and Continuous

• Let X be a continuous random variable

• Let N be a discrete random variable

 Conditional PDF of X given N:

 Conditional PMF of N given X:

 If X and N are independent, then:
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Beta Random Variable

• X is a Beta Random Variable: X ~ Beta(a, b)

 Probability Density Function (PDF):

where 

 Symmetric when a = b
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• Flip a coin (n + m) times, comes up with n heads

 We don’t know probability X that coin comes up heads

 All we know is that: X ~ Uni(0, 1)

 What is density of X given n heads in n + m flips?

 Let N = number of heads

 Given X = x, coin flips independent: N | X ~ Bin(n + m, x)

 Compute conditional density of X given N = n

Flipping Coin With Unknown Probability 
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• Flip a coin (n + m) times, comes up with n heads

 Conditional density of X given N = n

 Note:

 Recall Beta distribution:

 Hey, that looks more familiar now...

 X | (N = n, n + m trials) ~ Beta(n + 1, m + 1)

Dude, Where’s My Beta?!
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• X | (N = n, m + n trials) ~ Beta(n + 1, m + 1)

 X ~ Uni(0, 1)

 Check this out, boss:

o Beta(1, 1) = Uni(0, 1)

 So, X ~ Beta(1, 1)

 “Prior” distribution of X (before seeing any flips) is Beta

 “Posterior” distribution of X (after seeing flips) is Beta

• Beta is a conjugate distribution for Beta

 Prior and posterior parametric forms are the same!

 Beta is also conjugate for Bernoulli and Binomial

 Practically, conjugate means easy update:

o Add number of “heads” and “tails” seen to Beta parameters

Understanding Beta
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• Can set X ~ Beta(a, b) as prior to reflect how 

biased you think coin is apriori

 This is a subjective probability!

 Then observe n + m trials,

where n of trials are heads

• Update to get posterior probability

 X | (n heads in n + m trials) ~ Beta(a + n, b + m)

 Sometimes call a and b the “equivalent sample size”

 Prior probability for X based on seeing (a + b – 2) 

“imaginary” trials, where (a – 1) of them were heads.

 Beta(1, 1) ~ Uni(0, 1)   we haven’t seen any 

“imaginary trials”, so apriori know nothing about coin

Further Understanding Beta


