Sum of Independent Binomial RVs

- Let X and Y be independent random variables
- $X \sim \operatorname{Bin}\left(n_{1}, p\right)$ and $Y \sim \operatorname{Bin}\left(n_{2}, p\right)$
- $X+Y \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)$
- Intuition:
- X has n_{1} trials and Y has n_{2} trials - Each trial has same "success" probability p
- Define Z to be $n_{1}+n_{2}$ trials, each with success prob. p
- $Z \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)$, and also $Z=X+Y$
- More generally: $X_{i} \sim \operatorname{Bin}\left(\mathrm{n}_{i}, \mathrm{p}\right)$ for $1 \leq i \leq \mathrm{N}$

$$
\left(\sum_{i=1}^{n} X_{i}\right) \sim \operatorname{Bin}\left(\sum_{i=1}^{N} n_{i}, p\right)
$$

Dance, Dance, Convolution

- Let X and Y be independent random variables
- Cumulative Distribution Function (CDF) of $X+Y$:
$F_{X+Y}(a)=P(X+Y \leq a)$

$$
\begin{aligned}
& =\iint_{x+y \leq a} f_{X}(x) f_{Y}(y) d x d y=\int_{y=-\infty}^{\infty} \int_{x=-\infty}^{a-y} f_{X}(x) d x f_{Y}(y) d y \\
& =\int_{y=-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y
\end{aligned}
$$

- F_{X+Y} is called convolution of F_{X} and F_{Y}
- Probability Density Function (PDF) of $X+Y$, analogous:

$$
f_{X+Y}(a)=\int_{y=-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y
$$

- In discrete case, replace \int with \sum_{y}^{∞}, and $f(y)$ with $p(y)$

Sum of Independent Poisson RVs

- Let X and Y be independent random variables
- $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$
- $\mathrm{X}+\mathrm{Y} \sim \operatorname{Poi}\left(\lambda_{1}+\lambda_{2}\right)$
- Proof: (just for reference)
- Rewrite $(\mathrm{X}+\mathrm{Y}=n)$ as $(\mathrm{X}=k, \mathrm{Y}=n-k)$ where $0 \leq k \leq n$ $P(X+Y=n)=\sum_{k=0}^{n} P(X=k, Y=n-k)=\sum_{k=0}^{n} P(X=k) P(Y=n-k)$
$=\sum_{k=0}^{n} e^{-\lambda_{1}} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{2}} \frac{\lambda_{2}^{n-k}}{(n-k)!}=e^{-\left(\lambda_{1}+\lambda_{2}\right)} \sum_{k=0}^{n} \frac{\lambda_{1}^{k} \lambda_{2}^{n-k}}{k!(n-k)!}=\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda_{1}^{k} \lambda_{2}^{n-k}$
- Noting Binomial coefficient: $\left(\lambda_{1}+\lambda_{2}\right)^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda_{1}^{k} \lambda_{2}^{n-k}$
- $P(X+Y=n)=\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{n!}\left(\lambda_{1}+\lambda_{2}\right)^{n}$ so, $\mathrm{X}+\mathrm{Y}=\mathrm{n} \sim \operatorname{Poi}\left(\lambda_{1}+\lambda_{2}\right)$

Sum of Independent Uniform RVs

- Let X and Y be independent random variables
- $\mathrm{X} \sim \operatorname{Uni}(0,1)$ and $\mathrm{Y} \sim \operatorname{Uni}(0,1) \rightarrow f(a)=1$ for $0 \leq a \leq 1$
- What is PDF of $X+Y$?

$$
f_{X+Y}(a)=\int_{y=0}^{1} f_{X}(a-y) f_{Y}(y) d y=\int_{y=0}^{1} f_{X}(a-y) d y
$$

- When $0 \leq a \leq 1$ and $0 \leq y \leq a, 0 \leq a-y \leq 1 \rightarrow f_{X}(a-y)=1$

$$
f_{X+Y}(a)=\int_{y=0}^{a} d y=a
$$

- When $1<a<2$ and $a-1 \leq y \leq 1,0 \leq a-y \leq 1 \rightarrow f_{X}(a-y)=1$

Sum of Independent Normal RVs

- Let X and Y be independent random variables
- $X \sim N\left(\mu_{1}, \sigma_{1}{ }^{2}\right)$ and $Y \sim N\left(\mu_{2}, \sigma_{2}{ }^{2}\right)$
- $X+Y \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}{ }^{2}+\sigma_{2}{ }^{2}\right)$
- Generally, have n independent random variables
$X_{i} \sim N\left(\mu_{\mathrm{i}}, \sigma_{\mathrm{i}}^{2}\right)$ for $i=1,2, \ldots, n$:

$$
\left(\sum_{i=1}^{n} X_{i}\right) \sim N\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)
$$

Virus Infections

- Say your RCC checks dorm machines for viruses
- 50 Macs, each independently infected with $p=0.1$
- 100 PCs, each independently infected with $p=0.4$
- $A=\#$ infected Macs $A \sim \operatorname{Bin}(50,0.1) \approx X \sim N(5,4.5)$
- $B=\#$ infected PCs $\quad B \sim \operatorname{Bin}(100,0.4) \approx Y \sim N(40,24)$
- What is $P(\geq 40$ machine infected)?
- $\mathrm{P}(\mathrm{A}+\mathrm{B} \geq 40) \approx \mathrm{P}(\mathrm{X}+\mathrm{Y} \geq 39.5)$
- $\mathrm{X}+\mathrm{Y}=\mathrm{W} \sim \mathrm{N}(5+40=45,4.5+24=28.5)$
$P(W \geq 39.5)=P\left(\frac{W-45}{\sqrt{28.5}}>\frac{39.5-45}{\sqrt{28.5}}\right)=1-\Phi(1.03) \approx 0.8485$
- Be glad it's not swine flu!

Discrete Conditional Distributions

- Recall that for events E and F:

$$
P(E \mid F)=\frac{P(E F)}{P(F)} \quad \text { where } P(F)>0
$$

- Now, have X and Y as discrete random variables
- Conditional PMF of X given Y (where $\left.p_{\gamma}(y)>0\right)$:
$P_{X \mid Y}(x \mid y)=P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}$
- Conditional CDF of X given Y (where $\left.p_{\curlyvee}(y)>0\right)$:

$$
\begin{aligned}
F_{X \mid Y}(a \mid y) & =P(X \leq a \mid Y=y)=\frac{P(X \leq a, Y=y)}{P(Y=y)} \\
& =\frac{\sum_{x \leq a} p_{X, Y}(x, y)}{p_{Y}(y)}=\sum_{x \leq a} p_{X \mid Y}(x \mid y)
\end{aligned}
$$

Operating System Loyalty

- Consider person buying 2 computers (over time)
- $X=1$ st computer bought is a PC (1 if it is, 0 if it is not)
- $Y=2 n d$ computer bought is a PC (1 if it is, 0 if it is not)
- Joint probability mass function (PMF):
- What is $\mathrm{P}(\mathrm{Y}=0 \mid \mathrm{X}=0)$?
$P(Y=0 \mid X=0)=\frac{p_{X, Y}(0,0)}{p_{X}(0)}=\frac{0.2}{0.3}=\frac{2}{3}$
- What is $\mathrm{P}(\mathrm{Y}=1 \mid \mathrm{X}=0)$?
$P(Y=1 \mid X=0)=\frac{p_{X, Y}(0,1)}{p_{X}(0)}=\frac{0.1}{0.3}=\frac{1}{3}$

X	0	1	$\mathrm{p}_{\mathrm{Y}}(\mathrm{y})$
0	0.2	0.3	0.5
1	0.1	0.4	0.5
$\mathrm{p}_{\mathrm{X}}(\mathrm{x})$	0.3	0.7	1.0

- What is $\mathrm{P}(\mathrm{X}=0 \mid \mathrm{Y}=1)$?
$P(X=0 \mid Y=1)=\frac{p_{X, Y}(0,1)}{p_{Y}(1)}=\frac{0.1}{0.5}=\frac{1}{5}$

And It Applies to Books Too...

P(Buy Book Y | Bought Book X)

Web Server Requests Redux

- Requests received at web server in a day
- $X=\#$ requests from humans/day $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$
- $Y=\#$ requests from bots/day $\quad Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$
- X and Y are independent $\rightarrow X+Y \sim \operatorname{Poi}\left(\lambda_{1}+\lambda_{2}\right)$
- What is $\mathrm{P}(\mathrm{X}=k \mid \mathrm{X}+\mathrm{Y}=n)$?
$P(X=k \mid X+Y=n)=\frac{P(X=k, Y=n-k)}{P(X+Y=n)}=\frac{P(X=k) P(Y=n-k)}{P(X+Y=n)}$ $=\frac{e^{-\lambda_{1}} \lambda_{1}^{k}}{k!} \cdot \frac{e^{-\lambda_{2}} \lambda_{2}^{n-k}}{(n-k)!} \cdot \frac{n!}{e^{-\left(\lambda_{1}+\lambda_{2}\right)}\left(\lambda_{1}+\lambda_{2}\right)^{n}}=\frac{n!}{k!(n-k)!} \cdot \frac{\lambda_{1}^{k} \lambda_{2}^{n-k}}{\left(\lambda_{1}+\lambda_{2}\right)^{n}}$ $=\binom{n}{k}\left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)^{k}\left(\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right)^{n-1}$
- $\mathrm{X} \left\lvert\, \mathrm{X}+\mathrm{Y} \sim \operatorname{Bin}\left(X+Y, \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)\right.$

Continuous Conditional Distributions

- Let X and Y be continuous random variables
- Conditional PDF of X given Y (where $\left.f_{Y}(y)>0\right)$:

$$
\begin{gathered}
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)} \\
f_{X \mid Y}(x \mid y) d x=\frac{f_{X, Y}(x, y) d x d y}{f_{Y}(y) d y}
\end{gathered}
$$

$\approx \frac{P(x \leq X \leq x+d x, y \leq Y \leq y+d y)}{P(y \leq Y \leq y+d y)}=P(x \leq X \leq x+d x \mid y \leq Y \leq y+d y)$

- Conditional CDF of X given Y (where $\left.f_{Y}(y)>0\right)$:
$F_{X \mid Y}(a \mid y)=P(X \leq a \mid Y=y)=\int_{-\infty}^{a} f_{X \mid Y}(x \mid y) d x$
- Note: Even though $\mathrm{P}(\mathrm{Y}=a)=0$, can condition on $\mathrm{Y}=a$ - Really considering: $P\left(a-\frac{\varepsilon}{2} \leq Y \leq a+\frac{\varepsilon}{2}\right)=\int^{a+\varepsilon / 2} f_{Y}(y) d y \approx \varepsilon f(a)$

Let's Do an Example

- X and Y are continuous RVs with PDF:

$$
f(x, y)= \begin{cases}\frac{12}{5} x(2-x-y) & \text { where } 0<x, y<1 \\ 0 & \text { otherwise }\end{cases}
$$

- Compute conditional density: $f_{X \mid Y}(x \mid y)$
$f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{f_{X, Y}(x, y)}{\int_{0}^{1} f_{X, Y}(x, y) d x}$

$$
=\frac{\frac{12}{5} x(2-x-y)}{\int_{0}^{1} \frac{12}{5} x(2-x-y) d x}=\frac{x(2-x-y)}{\int_{0}^{1} x(2-x-y) d x}=\frac{x(2-x-y)}{\left[x^{2}-\frac{x^{3}}{3}-\frac{x^{2} y}{2}\right]_{0}^{1}}
$$

$$
=\frac{x(2-x-y)}{\frac{2}{3}-\frac{y}{2}}=\frac{6 x(2-x-y)}{4-3 y}
$$

Independence and Conditioning

- If X and Y are independent discrete RVs:

$$
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}=\frac{P(X=x) P(Y=y)}{P(Y=y)}=P(X=x)
$$

$$
p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}=\frac{p_{X}(x) p_{Y}(y)}{p_{Y}(y)}=p_{X}(x)
$$

- Analogously, for independent continuous RVs:

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{f_{X}(x) f_{Y}(y)}{f_{Y}(y)}=f_{X}(x)
$$

Mixing Discrete and Continuous

- Let X be a continuous random variable
- Let N be a discrete random variable
- Conditional PDF of X given N :

$$
f_{X \mid N}(x \mid n)=\frac{p_{N \mid X}(n \mid x) f_{X}(x)}{p_{N}(n)}
$$

- Conditional PMF of N given X :

$$
p_{N \mid X}(n \mid x)=\frac{f_{X \mid N}(x \mid n) p_{N}(n)}{f_{X}(x)}
$$

- If X and N are independent, then:

$$
f_{X \mid N}(x \mid n)=f_{X}(x) \quad p_{N \mid X}(n \mid x)=p_{N}(n)
$$

Conditional Independence Revisited

- n discrete random variables $X_{1}, X_{2}, \ldots, X_{n}$ are called conditionally independent given Y if:
$P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n} \mid Y=y\right)=\prod_{i=1}^{n} P\left(X_{i}=x_{i} \mid Y=y\right)$ for all $x_{1}, x_{2}, \ldots, x_{n}, y$
- Analogously, for continuous random variables:
$P\left(X_{1} \leq a_{1}, X_{2} \leq a_{2}, \ldots, X_{n} \leq a_{n} \mid Y=y\right)=\prod_{i=1}^{n} P\left(X_{i} \leq a_{i} \mid Y=y\right)$ for all $a_{1}, a_{2}, \ldots, a_{n}, y$
- Note: can turn products into sums using logs:

$$
\begin{gathered}
\ln \prod_{i=1}^{n} P\left(X_{i}=x_{i} \mid Y=y\right)=\sum_{\mathrm{i}=1}^{\mathrm{n}} \ln P\left(X_{i}=x_{i} \mid Y=y\right)=K \\
\prod_{i=1}^{n} P\left(X_{i}=x_{i} \mid Y=y\right)=e^{K}
\end{gathered}
$$

Beta Random Variable

- X is a Beta Random Variable: X ~ $\operatorname{Beta}(a, b)$
- Probability Density Function (PDF):

- Symmetric when $a=b$
- $E[X]=\frac{a}{a+b} \quad \operatorname{Var}(X)=\frac{a b}{(a+b)^{2}(a+b+1)}$

$$
\operatorname{Var}(X)=\frac{a b}{(a+b)^{2}(a+b+1)}
$$

Flipping Coin With Unknown Probability

- Flip a coin $(\mathrm{n}+\mathrm{m})$ times, comes up with n heads
- We don't know probability X that coin comes up heads
- All we know is that: $X \sim \operatorname{Uni}(0,1)$
- What is density of X given n heads in $n+m$ flips?
- Let $\mathrm{N}=$ number of heads
- Given $X=x$, coin flips independent: $N \mid X \sim \operatorname{Bin}(n+m, x)$
- Compute conditional density of X given $\mathrm{N}=\mathrm{n}$

$$
\begin{aligned}
f_{X \mid N}(x \mid n) & =\frac{P(N=n \mid X=x)\left(\begin{array}{c}
1 \\
f_{X}(x) \\
P(N=n)
\end{array}=\frac{\binom{n+m}{n} x^{n}(1-x)^{m}}{P(N=n)}\right.}{} \begin{aligned}
& \frac{1}{c} \cdot x^{n}(1-x)^{m} \text { where } c=\int_{0}^{1} x^{n}(1-x)^{m} d x
\end{aligned}
\end{aligned}
$$

Dude, Where's My Beta?!

- Flip a coin $(\mathrm{n}+\mathrm{m})$ times, comes up with n heads
- Conditional density of X given $\mathrm{N}=\mathrm{n}$

$$
f_{X \mid N}(x \mid n)=\frac{1}{c} \cdot x^{n}(1-x)^{m} \text { where } c=\int_{0}^{1} x^{n}(1-x)^{m} d x
$$

- Note: $0<x<1$, so $f_{X \mid N}(x \mid n)=0$ otherwise
- Recall Beta distribution:
$f(x)=\left\{\begin{array}{ll}\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1} & 0<x<1 \\ 0 & \text { otherwise }\end{array} \quad B(a, b)=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x\right.$
- Hey, that looks more familiar now...
- $\mathrm{X} \mid(\mathrm{N}=\mathrm{n}, \mathrm{n}+\mathrm{m}$ trials $) \sim \operatorname{Beta}(\mathrm{n}+1, \mathrm{~m}+1)$

Understanding Beta

- $\mathrm{X} \mid(\mathrm{N}=\mathrm{n}, \mathrm{m}+\mathrm{n}$ trials $) \sim \operatorname{Beta}(\mathrm{n}+1, \mathrm{~m}+1)$
- X ~Uni(0, 1)
- Check this out, boss: $\quad f(x)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1}=\frac{1}{B(a, b)} x^{0}(1-x)^{0}$
- So, X ~ Beta(1, 1)
- "Prior" distribution of X (before seeing any flips) is Beta
. "Posterior" distribution of X (after seeing flips) is Beta
- Beta is a conjugate distribution for Beta
- Prior and posterior parametric forms are the same!
- Beta is also conjugate for Bernoulli and Binomial
- Practically, conjugate means easy update:
-Add number of "heads" and "tails" seen to Beta parameters

Further Understanding Beta

- Can set $X \sim \operatorname{Beta}(a, b)$ as prior to reflect how biased you think coin is apriori
- This is a subjective probability!
- Then observe $\mathrm{n}+\mathrm{m}$ trials, where n of trials are heads
- Update to get posterior probability
- X| (n heads in $\mathrm{n}+\mathrm{m}$ trials) ~ $\operatorname{Beta}(\mathrm{a}+\mathrm{n}, \mathrm{b}+\mathrm{m})$
- Sometimes call a and b the "equivalent sample size"
- Prior probability for X based on seeing $(a+b-2)$ "imaginary" trials, where $(a-1)$ of them were heads
- Beta(1, 1) ~Uni(0,1) \rightarrow we haven't seen any "imaginary trials", so apriori know nothing about coin

