

Understanding Beta

- X | (N = n, m + n trials) ~ Beta(n + 1, m + 1)
 - X ~ Uni(0, 1)
 - Check this out, boss: $f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} = \frac{1}{B(a,b)} x^0 (1-x)^0$ Beta(1, 1) = Uni(0, 1) $= \frac{1}{b_0^{1/2} t^{1/2}} x^{1/2} = 1$ where 0 < x < 1
 - So, X ~ Beta(1, 1)
 - "Prior" distribution of X (before seeing any flips) is Beta
 - "Posterior" distribution of X (after seeing flips) is Beta
- · Beta is a conjugate distribution for Beta
 - · Prior and posterior parametric forms are the same!
 - Beta is also conjugate for Bernoulli and Binomial
 - · Practically, conjugate means easy update: o Add number of "heads" and "tails" seen to Beta parameters

Further Understanding Beta

- Can set X ~ Beta(a, b) as prior to reflect how biased you think coin is apriori
 - This is a subjective probability! • Then observe n + m trials,
 - where n of trials are heads
- · Update to get posterior probability
 - X | (n heads in n + m trials) ~ Beta(a + n, b + m)
 - Sometimes call a and b the "equivalent sample size"
 - Prior probability for X based on seeing (a + b 2)"imaginary" trials, where (a - 1) of them were heads.
 - Beta(1, 1) ~ Uni(0, 1) → we haven't seen any "imaginary trials", so apriori know nothing about coin