What Are Parameters?

- · Consider some probability distributions:
 - Ber(p) $\theta = p$
 - Poi(λ)
- $\theta = \lambda$

 $\theta = (\mu, \sigma^2)$

- Multinomial(p₁, p₂, ..., p_m)
 - $(p_2, ..., p_m)$ $\theta = (p_1, p_2, ..., p_m)$ $\theta = (a, b)$
- Uni(a, b)
 Normal(μ, σ²)
- Etc.
- · Call these "parametric models"
- · Given model, parameters yield actual distribution
 - Usually refer to parameters of distribution as θ
 - Note that θ that can be a vector of parameters

Why Do We Care?

- · In real world, don't know "true" parameters
 - But, we do get to observe data
 - E.g., number of times coin comes up heads, lifetimes of disk drives produced, number of visitors to web site per day, etc.
 - Need to estimate model parameters from data
 - "Estimator" is random variable estimating parameter
- Want "point estimate" of parameter
 - Single value for parameter as opposed to distribution
- Estimate of parameters allows:
 - Better understanding of process producing data
 - · Future predictions based on model
 - Simulation of processes

Recall Sample Mean

- Consider *n* I.I.D. random variables X₁, X₂, ... X_n
 - X_i have distribution F with E[X_i] = μ and Var(X_i) = σ²
 - We call sequence of X_i a <u>sample</u> from distribution F
 - Recall sample mean: $\overline{X} = \sum_{i=1}^{n} \frac{X_i}{n}$ where $E[\overline{X}] = \mu$
 - Recall variance of sample mean: $Var(\overline{X}) = \frac{\sigma^2}{r}$
 - Clearly, sample mean \overline{X} is a random variable

Sampling Distribution

- Note that sample mean \overline{X} is random variable
 - "Sampling distribution of mean" is the distribution of the random variable \overline{X}
 - Central Limit Theorem tells us sampling distribution of $\overline{\mathbf{X}}$ is approximately normal when sample size, *n*, is large
 - Rule of thumb for "large" n: n > 30, but larger is better (> 100)
 - ° Can use CLT to make inference about sample mean

Demo Redux

- Recall: *n*-th moment of distribution for variable X: $m_n = E[X^n]$
- Consider I.I.D. random variables X₁, X₂, ..., X_n
 X_i have distribution F

• Let
$$\hat{m}_1 = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 $\hat{m}_2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2$... $\hat{m}_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k$
• \hat{m}_k are called the "sample moments"

Estimates of the moments of distribution based on data

- · Method of moments estimators
 - Estimate model parameters by equating "true" moments to sample moments: $m_i \approx \hat{m}_i$

- What is difference between sample variance and MOM estimate for variance?
 - Imagine you have a sample of size n = 1
 - What is sample variance?

$$S^2 = \sum_{i=1}^{n} \frac{(X_i - \overline{X})^2}{n-1} =$$
undefine

. I.e., don't really know variability of data

$$\frac{\sum_{i=1}^{n} (X_i^2 - \overline{X}^2)}{n} = \frac{\sum_{i=1}^{1} (X_i^2 - X_i^2)}{1} = 0$$

I.e., have complete certainty about distribution!
 There is no variance

- Bias of estimator: $E[\hat{\theta}] \theta$
 - When bias = 0, we call the estimator "unbiased"
 - A biased estimator is not necessarily a bad thing
 - Sample mean $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is unbiased estimator
 - Sample variance $S^2 = \sum_{i=1}^{n} \frac{(X_i \overline{X})^2}{n-1}$ is unbiased estimator
 - MOM estimator of variance = ⁿ⁻¹/_nS² is biased
 Asymptotically less biased as n → ∞
 - For large *n*, either sample variance or MOM estimate of variance is fine.

Estimator Consistency

- Estimator "consistent": $\lim_{t \to 0} P(|\hat{\theta} \theta| < \varepsilon) = 1$ for $\varepsilon > 0$
 - As we get more data, estimate should deviate from true value by at most a small amount
 - This is actually known as "weak" consistency
 - Note similarity to weak law of large numbers:

$$\lim_{n\to\infty} P(|X-\mu|\geq\varepsilon)\to 0$$

· Equivalently:

 $\lim P(|\overline{X} - \mu| < \varepsilon) \to 1$

- Establishes sample mean as consistent estimate for $\boldsymbol{\mu}$
- Generally, MOM estimates are consistent

Method of Moments with Bernoulli

- Consider I.I.D. random variables X₁, X₂, ..., X_n
 X_i ~ Ber(p)
- Estimate p

$$p = E[X_i] \approx \hat{m}_1 = \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i = \hat{p}_1$$

- Can use estimate of p for X ~ Bin(n, p)
- If you know what n is, you don't need to estimate that

- Consider I.I.D. random variables X₁, X₂, ..., X_n
 X_i ~ Poi(λ)
- Estimate λ

$$\lambda = E[X_i] \approx \hat{m}_1 = \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$$

 $= \hat{\lambda}$

- But note that for Poisson, $\lambda = Var(X_i)$ as well!
- Could also use method of moments to estimate: $\sum_{i=1}^{n} (\mathbf{x}^{2} - \overline{\mathbf{x}}^{2})$

$$\lambda = E[X_1^2] - E[X_1]^2 \approx \hat{m}_2 - (\hat{m}_1)^2 = \frac{\sum_{i=1}^n (X_i^2 - X^2)}{n} = \hat{\lambda}$$

- Usually, use first moment estimate
- More generally, use the one that's easiest to compute

Method of Moments with Normal

- Consider I.I.D. random variables X₁, X₂, ..., X_n
 X_i ~ N(μ, σ²)
- Estimate μ $\mu = E[X_i] \approx \hat{m}_i = \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i = \hat{\mu}$
- Now estimate σ^2

$$\sigma^{2} \approx \hat{m}_{2} - (\hat{m}_{1})^{2} \\ = \left(\frac{1}{n}\sum_{i=1}^{n} X_{i}^{2}\right) - \hat{\mu}^{2} = \frac{1}{n}\sum_{i=1}^{n} X_{i}^{2} - \frac{1}{n}\sum_{i=1}^{n} \overline{X}^{2} = \frac{\sum_{i=1}^{n} (X_{i}^{2} - \overline{X}^{2})}{n}$$

Method of Moments with Uniform

- Consider I.I.D. random variables X₁, X₂, ..., X_n
 X_i ~ Uni(a, b)
 - Estimate mean:

$$\mu \approx \hat{m}_1 = \frac{1}{n} \sum_{i=1}^n X_i = \hat{\mu}$$

• Estimate variance:

$$\sum_{i=1}^{n} (X_i^2 - \overline{X}^2)$$

$$\sigma^2 \approx \hat{m}_2 - (\hat{m}_1)^2 = \frac{n}{n} = \hat{\sigma}^2$$

- For Uni(*a*, *b*), know that: $\mu = \frac{a+b}{2}$ and $\sigma^2 = \frac{(b-a)^2}{12}$
- Solve (two equations, two unknowns): • Set $b = 2\mu - a$, substitute into formula for σ^2 and solve: $\hat{a} = \overline{X} - \sqrt{3}\hat{\sigma}$ and $\hat{b} = \overline{X} + \sqrt{3}\hat{\sigma}$