From Urns to Coupons

- "Coupon Collecting" is classic probability problem
- There exist N different types of coupons
- Each is collected with some probability $p_{i}(1 \leq i \leq N)$
- Ask questions like:
- After you collect m coupons, what is probability you have k different kinds?
- What is probability that you have ≥ 1 of each N coupon types after you collect m coupons?
- You've seen concept (in a more practical way)
- N coupon types $=N$ buckets in hash table
- collecting a coupon = hashing a string to a bucket

Digging Deeper on Independence

- Recall, two events E and F are called independent if

$$
P(E F)=P(E) P(F)
$$

- If E and F are independent, does that tell us anything about:

$$
P(E F \mid G)=P(E \mid G) P(F \mid G),
$$

where G is an arbitrary event?

- In general, No!

Not-so Independent Dice

- Roll two 6-sided dice, yielding values D_{1} and D_{2}
- Let E be event: $\mathrm{D}_{1}=1$
- Let F be event: $D_{2}=6$
- Let G be event: $D_{1}+D_{2}=7$
- E and F are independent
- $P(E)=1 / 6, P(F)=1 / 6, P(E F)=1 / 36$
- Now condition both E and F on G :
- $P(E \mid G)=1 / 6, \quad P(F \mid G)=1 / 6, \quad P(E F \mid G)=1 / 6$
- $\mathrm{P}(\mathrm{EF} \mid \mathrm{G}) \neq \mathrm{P}(\mathrm{E} \mid \mathrm{G}) \mathrm{P}(\mathrm{F} \mid \mathrm{G}) \rightarrow \mathrm{E} \mid \mathrm{G}$ and $\mathrm{F} \mid \mathrm{G}$ dependent
- Independent events can become dependent by conditioning on additional information

Do CS Majors Get Less A's?

- Say you are in a dorm with 100 students
- 10 of the students are CS majors: $\mathrm{P}(\mathrm{CS})=0.1$
- 30 of the students get straight A's: $P(A)=0.3$
- 3 students are CS majors who get straight A's
- $\mathrm{P}(\mathrm{CS}, \mathrm{A})=0.03$
- $P(C S, A)=P(C S) P(A)$, so $C S$ and A are independent
- At faculty night, only CS majors and A students show up
- So, 37 ($=10+30-3$) students arrive
- Of 37 students, 10 are $C S \Rightarrow P(C S \mid C S$ or $A)=10 / 37=0.27$
- Appears that being CS major lowers probability of straight A's
- But, weren't they supposed to be independent?
- In fact, CS and A conditionally dependent at faculty night

Explaining Away

- Say you have a lawn
- It gets watered by rain or sprinklers
- $P($ rain $)$ and P (sprinklers were on) are independent
- Now, you come outside and see the grass is wet
- You know that the sprinklers were on
- Does that lower probability that rain was cause of wet grass?
- This phenomena is called "explaining away"
- One cause of an observation makes other causes less likely
- Only CS majors and A students come to faculty night - Knowing you came because you're a CS major makes it less likely you came because you get straight A's

Conditioning Can Break Dependence

- Consider a randomly chosen day of the week
- Let A be event: It is not Monday
- Let B be event: It is Saturday
- Let C be event: It is the weekend
- A and B are dependent
- $P(A)=6 / 7, \quad P(B)=1 / 7, \quad P(A B)=1 / 7 \neq(6 / 7)(1 / 7)$
- Now condition both A and B on C :
- $P(A \mid C)=1, P(B \mid C)=1 / 2, P(A B \mid C)=1 / 2$
- $\mathrm{P}(\mathrm{AB} \mid \mathrm{C})=\mathrm{P}(\mathrm{A} \mid \mathrm{C}) \mathrm{P}(\mathrm{B} \mid \mathrm{C}) \rightarrow \mathrm{A} \mid \mathrm{C}$ and $\mathrm{B} \mid \mathrm{C}$ independent
- Dependent events can become independent by conditioning on additional information

Conditional Independence

- Two events E and F are called conditionally independent given G, if
$P(E F \mid G)=P(E \mid G) P(F \mid G)$
Or, equivalently: $P(E \mid F G)=P(E \mid G)$
- Exploiting conditional independence to generate fast probabilistic computations is one of the main contributions CS has made to probability theory

Binary Random Variables

- A binary random variable is a random variable with 2 possible outcomes
- n coin flips, each which independently come up heads with probability p
- $Y=$ number of "heads" on n flips
- $\mathrm{P}(\mathrm{Y}=\mathrm{k})=\binom{n}{k} p^{k}(1-p)^{n-k}$, where $k=0,1,2, \ldots, \mathrm{n}$
- So, $\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=1$
- Proof: $\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=(p+(1-p))^{n}=1^{n}=1$

Probability Mass Functions

- A random variable X is discrete if it has countably many values (e.g., $x_{1}, x_{2}, x_{3}, \ldots$)
- Probability Mass Function (PMF) of a discrete random variable is:

$$
p(a)=P(X=a)
$$

- Since $\sum_{i=1}^{\infty} p\left(x_{i}\right)=1$, it follows that:

$$
P(X=a)=\left\{\begin{array}{l}
p\left(x_{i}\right) \geq 0 \text { for } i=1,2, \ldots \\
p(x)=0 \text { otherwise }
\end{array}\right.
$$

where X can assume values $x_{1}, x_{2}, x_{3}, \ldots$

Random Variable

- A Random Variable is a real-valued function defined on a sample space
- Example:
- 3 fair coins are flipped.
- $Y=$ number of "heads" on 3 coins
- Y is a random variable
- $\mathrm{P}(\mathrm{Y}=0)=1 / 8 \quad(\mathrm{~T}, \mathrm{~T}, \mathrm{~T})$
- $P(Y=1)=3 / 8 \quad(H, T, T),(T, H, T),(T, T, H)$
- $P(Y=2)=3 / 8 \quad(H, H, T),(H, T, H),(T, H, H)$
- $P(Y=3)=1 / 8 \quad(H, H, H)$
- $P(Y \geq 4)=0$

Simple Game

- Urn has 11 balls (3 blue, 3 red, 5 black)
- 3 balls drawn. $+\$ 1$ for blue, $-\$ 1$ for red, $\$ 0$ for black
- $Y=$ total winnings
- $\mathrm{P}(\mathrm{Y}=0)=\binom{5}{3}+\binom{3}{1}\binom{3}{1}\binom{5}{1} /\binom{11}{3}=\frac{55}{165}$
- $P(Y=1)=\binom{3}{1}\binom{5}{2}+\binom{3}{2}\binom{3}{1} /\binom{11}{3}=\frac{39}{165}=P(Y=-1)$
- $\mathrm{P}(\mathrm{Y}=2)=\binom{3}{2}\binom{5}{1} /\binom{11}{3}=\frac{15}{165}=\mathrm{P}(\mathrm{Y}=-2)$
- $\mathrm{P}(\mathrm{Y}=3)=\binom{3}{3} /\binom{11}{3}=\frac{1}{165}=\mathrm{P}(\mathrm{Y}=-3)$

PMF For a Roll of Two 6-Sided Dice

Cumulative Distribution Functions

- For a random variable X, the Cumulative Distribution Function (CDF) is defined as:

$$
F(a)=F(X \leq a) \text { where }-\infty<a<\infty
$$

- The CDF of a discrete random variable is:

$$
F(a)=F(X \leq a)=\sum_{\text {all } x \leq a} p(x)
$$

CDF For a Single 6-Sided Die

Expected Value

- The Expected Values for a discrete random variable X is defined as:

$$
E[X]=\sum_{x: p(x)>0} x p(x)
$$

- Note: sum over all values of x that have $p(x)>0$.
- Expected value also called: Mean, Expectation, Weighted Average, Center of Mass, $1^{\text {st }}$ Moment

Expected Value Examples

- Roll a 6-Sided Die. X is outcome of roll
- $p(1)=p(2)=p(3)=p(4)=p(5)=p(6)=1 / 6$
- $E[X]=1\left(\frac{1}{6}\right)+2\left(\frac{1}{6}\right)+3\left(\frac{1}{6}\right)+4\left(\frac{1}{6}\right)+5\left(\frac{1}{6}\right)+6\left(\frac{1}{6}\right)=\frac{7}{2}$
- Y is random variable
- $P(Y=1)=1 / 3, \quad P(Y=2)=1 / 6, \quad P(Y=3)=1 / 2$
- $E[Y]=1(1 / 3)+2(1 / 6)+3(1 / 2)=13 / 6$

Indicator Variables

- A variable I is called an indicator variable for event A if

$$
I= \begin{cases}1 & \text { if } A \text { occurs } \\ 0 & \text { if } A^{c} \text { occurs }\end{cases}
$$

- What is $\mathrm{E}[I]$?
- $p(1)=P(A), \quad p(0)=1-P(A)$
- $\mathrm{E}[I]=1 \mathrm{P}(\mathrm{A})+0(1-\mathrm{P}(\mathrm{A}))=\mathrm{P}(\mathrm{A})$

Lying With Statistics

"There are three kinds of lies: lies, damned lies, and statistics"

- Mark Twain
- School has 3 classes with 5, 10 and 150 students
- Randomly choose a class with equal probability
- X = size of chosen class
- What is $E[X]$?
- $\mathrm{E}[\mathrm{X}]=5(1 / 3)+10(1 / 3)+150(1 / 3)$

$$
=165 / 3=55
$$

Expectation of a Random Variable

- Let $Y=g(X)$, where g is real-valued function

$$
\begin{aligned}
E[g(X)] & =E[Y]=\sum_{j} y_{j} p\left(y_{j}\right)=\sum_{j} y_{j} \sum_{i_{i: g}\left(x_{i}\right)=y_{j}} p\left(x_{i}\right) \\
& =\sum_{j} g\left(x_{i}\right) \sum_{i,\left(x_{i}\right)=y_{j}} p\left(x_{i}\right)=\sum_{j} \sum_{i: g(x, i)=y_{j}} g\left(x_{i}\right) p\left(x_{i}\right) \\
& =\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right)
\end{aligned}
$$

Lying With Statistics

"There are three kinds of lies: lies, damned lies, and statistics"

- Mark Twain
- School has 3 classes with 5, 10 and 150 students
- Randomly choose a student with equal probability
- $Y=$ size of class that student is in
- What is $\mathrm{E}[\mathrm{Y}]$?
- $\mathrm{E}[\mathrm{Y}]=5(5 / 165)+10(10 / 165)+150(150 / 165)$

$$
=22635 / 165 \approx 137
$$

- Note: $E[Y]$ is students' perception of class size
- But $\mathrm{E}[\mathrm{X}]$ is what is usually reported by schools!

Other Properties of Expectations

- Linearity:

$$
E[a X+b]=a E[X]+b
$$

- Consider $\mathrm{X}=6$-sided die roll, $\mathrm{Y}=2 \mathrm{X}-1$.
- $\mathrm{E}[\mathrm{X}]=3.5 \quad \mathrm{E}[\mathrm{Y}]=6$
- N-th Moment of X:

$$
E\left[X^{n}\right]=\sum_{x: p(x)>0} x^{n} p(x)
$$

- We'll see the $2^{\text {nd }}$ moment soon...

Utility

- Utility is value of some choice
- 2 choices, each with n consequences: $c_{1}, c_{2}, \ldots, c_{n}$
- One of c_{i} will occur with probability p_{i}
- Each consequence has some value (utility): $\mathrm{U}\left(\mathrm{c}_{\mathrm{i}}\right)$
- Which choice do you make?
- Example: Buy a \$1 lottery ticket (for \$1M prize)?
- Probability of winning is $1 / 10^{7}$
- Buy: $c_{1}=$ win, $c_{2}=$ lose, $U\left(c_{1}\right)=10^{6}-1, U\left(c_{2}\right)=-1$
- Don't Buy: $\mathrm{c}_{1}=$ lose, $\mathrm{U}\left(\mathrm{c}_{1}\right)=0$
- $E($ buy $)=1 / 10^{7}\left(10^{6}-1\right)+\left(1-1 / 10^{7}\right)(-1) \approx-0.9$
- $E($ don't buy) $=1(0)=0$
- "You can't lose if you don't play!"

