Welcome to St. Petersburg!

- Game set-up
- We have a fair coin (come up "heads" with $p=0.5$)
- Let $\mathrm{n}=$ number of coin flips before first "tails"
- You win $\$ 2^{n}$
- How much would you pay to play?
- Solution
- Let $X=$ your winnings
- $\mathrm{E}[\mathrm{X}]=\left(\frac{1}{2}\right)^{1} 2^{0}+\left(\frac{1}{2}\right)^{2} 2^{1}+\left(\frac{1}{2}\right)^{3} 2^{2}+\left(\frac{1}{2}\right)^{4} 2^{3}+\ldots=\sum_{i=0}^{\infty}\left(\frac{1}{2}\right)^{i+1} 2^{i}$

$$
=\sum_{i=0}^{\infty} \frac{1}{2}=\infty
$$

- I'll let you play for $\$ 1$ million... but just once! Takers?

Vegas Breaks You

- Why doesn't everyone do this?
- Real games have maximum bet amounts
- You have finite money
- Not be able to keep doubling bet beyond certain point
- Casinos can kick you out
- But, if you had:
- No betting limits, and
- Infinite money, and
- Could play as often as you want...
- Then, go for it!
- And tell me which planet you are living on

Breaking Vegas

- Consider even money bet (e.g., bet "Red" in roulette)
- $p=18 / 38$ you win $\$ Y$, otherwise $(1-p)$ you lose $\$ Y$
- Consider this algorithm for one series of bets:

1. $Y=\$ 1$
2. Bet Y
3. If Win, stop
4. if Loss, $Y=2^{*} Y$, goto 2

- Let $Z=$ winnings upon stopping
- $\mathrm{E}[\mathrm{Z}]=\left(\frac{18}{38}\right) 1+\left(\frac{20}{38}\right)\left(\frac{18}{38}\right)(2-1)+\left(\frac{20}{38}\right)^{2}\left(\frac{18}{38}\right)(4-2-1)+\ldots$

$$
=\sum_{i=0}^{\infty}\left(\frac{20}{38}\right)^{i}\left(\frac{18}{38}\right)\left(2^{i}-\sum_{j=1}^{i} i^{j-1}\right)=\left(\frac{18}{38}\right)_{i=0}^{\infty}\left(\frac{20}{38}\right)^{i}=\left(\frac{18}{38}\right) \frac{1}{1-\frac{20}{38}}=1
$$

- Expected winnings ≥ 0. Use algorithm infinitely often!

Variance

- Consider the following 3 distributions (PMFs)

- All have the same expected value, $\mathrm{E}[\mathrm{X}]=3$
- But "spread" in distributions is different
- Variance $=$ a formal quantification of "spread"

Variance

- If X is a random variable with mean μ then the variance of X, denoted $\operatorname{Var}(X)$, is:

$$
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]
$$

- Note: $\operatorname{Var}(X) \geq 0$
- Also known as the 2nd Central Moment, or square of the Standard Deviation

Computing Variance

$$
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]
$$

$$
=\sum_{x}(x-\mu)^{2} p(x)
$$

$$
=\sum_{x}\left(x^{2}-2 \mu x+\mu^{2}\right) p(x)
$$

$$
=\sum_{x} x^{2} p(x)-2 \mu \sum_{x} x p(x)+\mu^{2} \sum_{x} p(x)
$$

$$
=E\left[X^{2}\right]-2 \mu^{2}+\mu^{2} \quad \text { welcome the } 2^{\text {nd }} \text { moment! }
$$

$$
\begin{aligned}
& =E\left[X^{2}\right]-\mu^{2} \\
& =E\left[X^{2}\right]-(E[X])^{2}
\end{aligned}
$$

Variance of 6 Sided Die

- Let $X=$ value on roll of 6 sided die
- Recall that $E[X]=7 / 2$
- Compute $\mathrm{E}\left[\mathrm{X}^{2}\right]$
$E\left[X^{2}\right]=\left(1^{2}\right) \frac{1}{6}+\left(2^{2}\right) \frac{1}{6}+\left(3^{2}\right) \frac{1}{6}+\left(4^{2}\right) \frac{1}{6}+\left(5^{2}\right) \frac{1}{6}+\left(6^{2}\right) \frac{1}{6}=\frac{91}{6}$
$\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}$

$$
=\frac{91}{6}-\left(\frac{7}{2}\right)^{2}=\frac{35}{12}
$$

Properties of Variance

- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$
- Proof:
$\operatorname{Var}(a X+b)=E\left[(a X+b)^{2}\right]-(E[a X+b])^{2}$
$=E\left[a^{2} X^{2}+2 a b X+b^{2}\right]-(a E[X]+b)^{2}$
$=a^{2} E\left[X^{2}\right]+2 a b E[X]+b^{2}-\left(a^{2}(E[X])^{2}+2 a b E[X]+b^{2}\right)$
$=a^{2} E\left[X^{2}\right]-a^{2}(E[X])^{2}=a^{2}\left(E\left[X^{2}\right]-(E[X])^{2}\right)$
$=a^{2} \operatorname{Var}(X)$
- Standard Deviation of X, denoted $\operatorname{SD}(X)$, is:

$$
\mathrm{SD}(X)=\sqrt{\operatorname{Var}(X)}
$$

- $\operatorname{Var}(X)$ is in units of X^{2}
- $S D(X)$ is in same units as X

Jacob Bernoulli

- Jacob Bernoulli (1654-1705), also known as "James", was a Swiss mathematician

- One of many mathematicians in Bernoulli family
- The Bernoulli Random Variable is named for him
- He is my academic great ${ }^{11}$-grandfather
- Resemblance to Charlie Sheen weak at best

Bernoulli Random Variable

- Experiment results in "Success" or "Failure"
- X is random indicator variable ($1=$ success, $0=$ failure)
- $P(X=1)=p(1)=p \quad P(X=0)=p(0)=1-p$
- X is a Bernoulli Random Variable: $X \sim \operatorname{Ber}(p)$
- $E[X]=p$
- $\operatorname{Var}(X)=p(1-p)$
- Examples
- coin flip
- random binary digit
- whether a disk drive crashed

Binomial Random Variable

- Consider n independent trials of $\operatorname{Ber}(p)$ rand. var.
- X is number of successes in n trials
- X is a Binomial Random Variable: $X \sim \operatorname{Bin}(n, p)$

$$
P(X=i)=p(i)=\binom{n}{i} p^{i}(1-p)^{n-i} \quad i=0,1, \ldots, n
$$

- By Binomial Theorem, we know that $\sum_{i=0}^{\infty} P(X=i)=1$

- Examples

- \# of heads in n coin flips
- \# of 1's in randomly generated length n bit string
- \# of disk drives crashed in 1000 computer cluster - Assuming disks crash independently

Three Coin Flips

- Three fair ("heads" with $p=0.5$) coins are flipped
- X is number of heads
- $X \sim \operatorname{Bin}(3,0.5)$
$P(X=0)=\binom{3}{0} p^{0}(1-p)^{3}=\frac{1}{8}$
$P(X=1)=\binom{3}{1} p^{1}(1-p)^{2}=\frac{3}{8}$
$P(X=2)=\binom{3}{2} p^{2}(1-p)^{1}=\frac{3}{8}$
$P(X=3)=\binom{3}{3} p^{3}(1-p)^{0}=\frac{1}{8}$

Error Correcting Codes

- Error correcting codes
- Have original 4 bit string to send over network
- Add 3 "parity" bits, and send 7 bits total
- Each bit independently corrupted (flipped) in transition with probability 0.1
- $X=$ number of bits corrupted: $X \sim \operatorname{Bin}(7,0.1)$
- But, parity bits allow us to correct at most 1 bit error
- $P($ a correctable message is received)?
- $P(X=0)+P(X=1)$

Error Correcting Codes (cont)

- Using error correcting codes: $\mathrm{X} \sim \operatorname{Bin}(7,0.1)$

$$
\begin{aligned}
& P(X=0)=\binom{7}{0}(0.1)^{0}(0.9)^{7} \approx 0.4783 \\
& P(X=1)=\binom{7}{1}(0.1)^{1}(0.9)^{6} \approx 0.3720
\end{aligned}
$$

$$
\text { - } P(X=0)+P(X=1)=0.8503
$$

- What if we didn't use error correcting codes?
- $X \sim \operatorname{Bin}(4,0.1)$
- $\mathrm{P}($ correct message received $)=P(X=0)$
$P(X=0)=\binom{4}{0}(0.1)^{0}(0.9)^{4}=0.6561$
- Using error correction improves reliability ~30\%!

Genetic Inheritance

- Person has 2 genes for trait (eye color)
- Child receives 1 gene (equally likely) from each parent
- Child has brown eyes if either (or both) genes brown
- Child only has blue eyes if both genes blue
- Brown is "dominant" (d), Blue is recessive (r)
- Parents each have 1 brown and 1 blue gene
- 4 children, what is $\mathrm{P}(3$ children with brown eyes $)$?
- Child has blue eyes: $p=(1 / 2)(1 / 2)=1 / 4 \quad$ (2 blue genes)
- P (child has brown eyes) $=1-(1 / 4)=0.75$
- $X=\#$ of children with brown eyes. $X \sim \operatorname{Bin}(4,0.75)$ $P(X=3)=\binom{4}{3}(0.75)^{3}(0.25)^{1} \approx 0.4219$

Properties of $\operatorname{Bin}(n, p)$

- We have $X \sim \operatorname{Bin}(n, p)$
$E\left[X^{k}\right]=\sum_{i=0}^{n} i^{k}\binom{n}{i} p^{i}(1-p)^{n-i}=\sum_{i=1}^{n} i^{k}\binom{n}{i} p^{i}(1-p)^{n-i}$
- Noting that: $i\binom{n}{i}=\frac{i n!}{i!(n-i)!}=\frac{n(n-1)!}{(i-1)!((n-1)-(i-1))!}=n\binom{n-1}{i-1}$
$E\left[X^{k}\right]=n p \sum_{i=1}^{n} i^{k-1}\binom{n-1}{i-1} p^{i-1}(1-p)^{n-i}=n p \sum_{j=0}^{n-1}(j+1)^{k-1}\binom{n-1}{j} p^{j}(1-p)^{n-(j+1)}, \quad \begin{gathered}\text { where } \\ i=j+1\end{gathered}$
$=n p E\left[(Y+1)^{k-1}\right]$, where $Y \sim \operatorname{Bin}(n-1, p)$
- Set $k=1 \rightarrow \mathrm{E}[\mathrm{X}]=\mathrm{np}$
- Set $k=2 \rightarrow E\left[X^{2}\right]=n p E[Y+1]=n p[(n-1) p+1]$
- $\operatorname{Var}(X)=n p[(n-1) p+1]-(n p)^{2}=n p(1-p)$
- Note: $\operatorname{Ber}(p)=\operatorname{Bin}(1, p)$

Power of Your Vote

- Is it better to vote in small or large state?
- Small: more likely your vote changes outcome
- Large: larger outcome (electoral votes) if state swings
- a (= $2 n$) voters equally likely to vote for either candidate
- You are deciding $(a+1)^{\text {st }}$ vote $P(2 n$ voters tie $)=\binom{2 n}{n}\left(\frac{1}{2}\right)^{n}\left(\frac{1}{2}\right)^{n}=\frac{(2 n)!}{n!n!2^{2 n}}$
- Use Stirling's Approximation: $n!\approx n^{n+1 / 2} e^{-n} \sqrt{2 \pi}$ $P(2 n$ voters tie $) \approx \frac{(2 n)^{2 n+1 / 2} e^{-2 n} \sqrt{2 \pi}}{n^{2 n+1} e^{-2 n} 2 \pi 2^{2 n}}=\frac{1}{\sqrt{n \pi}}$
- Power $=\mathrm{P}($ tie $)$ * Elec. Votes $=\frac{1}{\sqrt{(a / 2) \pi}}(a c)=\frac{c \sqrt{2 a}}{\sqrt{\pi}}$
- Larger state $=$ more power

