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Welcome to St. Petersburg!

• Game set-up

 We have a fair coin (come up “heads” with p = 0.5)

 Let n = number of coin flips before first “tails”

 You win $2n

• How much would you pay to play?

• Solution

 Let X = your winnings

 E[X] = 

 I’ll let you play for $1 million...  but just once!  Takers?
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Breaking Vegas

• Consider even money bet (e.g., bet “Red” in roulette) 

 p = 18/38 you win $Y, otherwise (1 – p) you lose $Y

 Consider this algorithm for one series of bets:
1. Y = $1

2. Bet Y

3. If Win, stop

4. if Loss, Y = 2 * Y, goto 2

 Let Z = winnings upon stopping

 E[Z]

 Expected winnings ≥ 0.  Use algorithm infinitely often! 
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Vegas Breaks You

• Why doesn’t everyone do this?

 Real games have maximum bet amounts

 You have finite money

o Not be able to keep doubling bet beyond certain point

 Casinos can kick you out

• But, if you had:

 No betting limits, and

 Infinite money, and

 Could play as often as you want...

• Then, go for it!

 And tell me which planet you are living on

Variance

• Consider the following 3 distributions (PMFs)

• All have the same expected value, E[X] = 3

• But “spread” in distributions is different

• Variance = a formal quantification of “spread”

Variance

• If X is a random variable with mean m then the 

variance of X, denoted Var(X), is:

Var(X) = E[(X – m)2]

• Note: Var(X) ≥ 0

• Also known as the 2nd Central Moment, or 

square of the Standard Deviation

Computing Variance
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Ladies and gentlemen, please 

welcome the 2nd moment!
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Variance of 6 Sided Die

• Let X = value on roll of 6 sided die

• Recall that E[X] = 7/2

• Compute E[X2]
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Properties of Variance

• Var(aX + b) = a2Var(X)

 Proof:

Var(aX + b) = E[(aX + b)2] – (E[aX + b])2

= E[a2X2 + 2abX + b2] – (aE[X] + b)2

= a2E[X2] + 2abE[X] + b2 – (a2(E[X])2 + 2abE[X] + b2)

= a2E[X2] – a2(E[X])2 = a2(E[X2] – (E[X])2)

= a2Var(X)

• Standard Deviation of X, denoted SD(X), is:

 Var(X) is in units of X2

 SD(X) is in same units as X
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Jacob Bernoulli

• Jacob Bernoulli (1654-1705), also known as 

“James”, was a Swiss mathematician

• One of many mathematicians in Bernoulli family

• The Bernoulli Random Variable is named for him

• He is my academic great11-grandfather

• Resemblance to Charlie Sheen weak at best

Bernoulli Random Variable

• Experiment results in “Success” or “Failure”

 X is random indicator variable (1 = success, 0 = failure)

 P(X = 1) = p(1) = p P(X = 0) = p(0) = 1 – p

 X is a Bernoulli Random Variable:  X ~ Ber(p)

 E[X] = p

 Var(X) = p(1 – p)

• Examples

 coin flip

 random binary digit

 whether a disk drive crashed

Binomial Random Variable

• Consider n independent trials of Ber(p) rand. var.

 X is number of successes in n trials

 X is a Binomial Random Variable:  X ~ Bin(n, p)

 By Binomial Theorem, we know that 

• Examples

 # of heads in n coin flips

 # of 1’s in randomly generated length n bit string

 # of disk drives crashed in 1000 computer cluster

o Assuming disks crash independently
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Three Coin Flips

• Three fair (“heads” with p = 0.5) coins are flipped

 X is number of heads

 X ~ Bin(3, 0.5)
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Error Correcting Codes

• Error correcting codes

 Have original 4 bit string to send over network

 Add 3 “parity” bits, and send 7 bits total

 Each bit independently corrupted (flipped) in transition 

with probability 0.1

 X = number of bits corrupted:   X ~ Bin(7, 0.1)

 But, parity bits allow us to correct at most 1 bit error

• P(a correctable message is received)?

 P(X = 0) + P(X = 1)

Error Correcting Codes (cont)

• Using error correcting codes: X ~ Bin(7, 0.1)

 P(X = 0) + P(X = 1) = 0.8503

• What if we didn’t use error correcting codes?

 X ~ Bin(4, 0.1)

 P(correct message received) = P(X = 0)

• Using error correction improves reliability ~30%!
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Genetic Inheritance

• Person has 2 genes for trait (eye color)

 Child receives 1 gene (equally likely) from each parent

 Child has brown eyes if either (or both) genes brown

 Child only has blue eyes if both genes blue

 Brown is “dominant” (d) ,  Blue is recessive (r)

 Parents each have 1 brown and 1 blue gene

• 4 children, what is P(3 children with brown eyes)?

 Child has blue eyes: p = (½) (½)  = ¼   (2 blue genes)

 P(child has brown eyes) = 1 – (¼) = 0.75

 X = # of children with brown eyes.  X ~ Bin(4, 0.75)
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Properties of Bin(n, p)

• We have X ~ Bin(n, p)

 Noting that: 

 Set k = 1  E[X] = np

 Set k = 2  E[X2] = npE[Y + 1] = np[(n – 1)p + 1]

 Var(X) = np[(n – 1)p + 1] – (np)2 = np(1 – p)

• Note: Ber(p) = Bin(1, p)
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Power of Your Vote

• Is it better to vote in small or large state?

 Small: more likely your vote changes outcome

 Large: larger outcome (electoral votes) if state swings

 a (= 2n) voters equally likely to vote for either candidate

 You are deciding (a + 1)st vote

 Use Stirling’s Approximation:

 Power = P(tie) * Elec. Votes =  

 Larger state = more power
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