the law of large numbers \& the CLT


$$
\operatorname{Pr}\left(\lim _{n \rightarrow \infty}\left(\frac{X_{1}+\cdots+X_{n}}{n}\right)=\mu\right)=1
$$

If $X, Y$ are independent, what is the distribution of $Z=X+Y$ ?
Discrete case:

$$
\mathrm{p}_{\mathrm{Z}}(z)=\sum_{x} \mathrm{p}_{\mathrm{X}}(x) \cdot \mathrm{p}_{\mathrm{Y}}(z-x)
$$

Continuous case:


$$
\mathrm{f}_{\mathrm{Z}}(z)=\int_{-\infty}^{+\infty} \mathrm{f}_{\mathrm{X}}(x) \cdot \mathrm{f}_{\mathrm{Y}}(z-x) \mathrm{dx}
$$

$W=X+Y+Z$ ? Similar, but double sums/integrals
$V=W+X+Y+Z$ ? Similar, but triple sums/integrals

If $X$ and $Y$ are uniform, then $Z=X+Y$ is not; it's triangular:


Intuition: $X+Y \approx 0$ or $\approx 1$ is rare, but many ways to get $X+Y \approx 0.5$

Powerful math tricks for dealing with distributions
We won't do much with it, but mentioned/used in book, so a very brief introduction:
The $k^{\text {th }}$ moment of r.v. $X$ is $E\left[X^{k}\right] ;$ M.G.F. is $M(t)=E\left[e^{t X}\right]$

$$
\begin{array}{rlrrrrr}
e^{t X} & = & X^{0} \frac{t^{0}}{0!} & + & X^{1} \frac{t^{1}}{1!} & + & X^{2} \frac{t^{2}}{2!}
\end{array}+\begin{array}{rlrl}
3 & \frac{t^{3}}{3!} & + \\
M(t)=E\left[e^{t X}\right] & = & E\left[X^{0}\right] \frac{t^{0}}{0!} & +E\left[X^{1}\right] \frac{t^{1}}{1!}
\end{array}+E\left[X^{2}\right] \frac{t^{2}}{2!}+E\left[X^{3}\right] \frac{t^{3}}{3!}+
$$

An example:
MGF of normal $\left(\mu, \sigma^{2}\right)$ is $\exp \left(\mu t+\sigma^{2} \mathrm{t}^{2} / 2\right)$
Two key properties:
I. MGF of sum independent r.v.s is product of MGFs:

$$
M_{X+Y}(t)=E\left[e^{t(X+Y)}\right]=E\left[e^{t X} e^{t^{Y} Y}\right]=E\left[e^{t X}\right] E\left[e^{t^{Y}}\right]=M_{X}(t) M_{Y}(t)
$$

2. Invertibility: MGF uniquely determines the distribution.

$$
\text { e.g.: } M \times(t)=\exp \left(a t+b t^{2}\right) \text {, with } b>0 \text {, then } X \sim \operatorname{Normal}(a, 2 b)
$$

Important example: sum of normals is normal:

$$
\begin{aligned}
& X \sim \operatorname{Normal}\left(\mu_{1}, \sigma_{1}{ }^{2}\right) \quad Y \sim \operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right) \\
M_{X+Y}(t) & =\exp \left(\mu_{1} t+\sigma_{1}{ }^{2} t^{2} / 2\right) \cdot \exp \left(\mu_{2} t+\sigma_{2}{ }^{2} \mathrm{t}^{2} / 2\right) \\
& =\exp \left[\left(\mu_{1}+\mu_{2}\right) t+\left(\sigma_{1}{ }^{2}+\sigma_{2}{ }^{2}\right) t^{2} / 2\right]
\end{aligned}
$$

So $X+Y$ has mean $\left(\mu_{1}+\mu_{2}\right)$, variance $\left(\sigma_{1}{ }^{2}+\sigma_{2}{ }^{2}\right)$ (duh) and is normal! (way easier than slide 2 way!)
i.i.d. (independent, identically distributed) random vars

$$
X_{1}, X_{2}, X_{3}, \ldots
$$

$\mathrm{X}_{\mathrm{i}}$ has $\mu=\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]<\infty$ and $\sigma^{2}=\operatorname{Var}\left[\mathrm{X}_{\mathrm{i}}\right]$
$\mathrm{E}\left[\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}\right]=\mathrm{n} \mu$ and $\operatorname{Var}\left[\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}\right]=\mathrm{n} \sigma^{2}$

So limits as $n \rightarrow \infty$ do not exist (except in the degenerate case where $\mu=\sigma^{2}=0$; note that if $\mu=0$, the center of the data stays fixed, but if $\sigma^{2}>0$, then the spread grows with $n$ ).
i.i.d. (independent, identically distributed) random vars

$$
X_{1}, X_{2}, X_{3}, \ldots
$$

$\mathrm{X}_{\mathrm{i}}$ has $\mu=\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]<\infty$ and $\sigma^{2}=\operatorname{Var}\left[\mathrm{X}_{\mathrm{i}}\right]$
Consider the sample mean:

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

The Weak Law of Large Numbers:
For any $\varepsilon>0$, as $n \rightarrow \infty$

$$
\operatorname{Pr}(|\bar{X}-\mu|>\epsilon) \longrightarrow 0
$$

For any $\varepsilon>0$, as $\mathrm{n} \rightarrow \infty$

$$
\operatorname{Pr}(|\bar{X}-\mu|>\epsilon) \longrightarrow 0
$$

Proof: (assume $\sigma^{2}<\infty$ )

$$
\begin{gathered}
E[\bar{X}]=E\left[\frac{X_{1}+\cdots+X_{n}}{n}\right]=\mu \\
\operatorname{Var}[\bar{X}]=\operatorname{Var}\left[\frac{X_{1}+\cdots+X_{n}}{n}\right]=\frac{\sigma^{2}}{n}
\end{gathered}
$$

By Chebyshev inequality,

$$
\operatorname{Pr}(|\bar{X}-\mu| \geq \epsilon) \leq \frac{\sigma^{2}}{n \epsilon^{2}} \xrightarrow{n \rightarrow \infty} 0
$$

i.i.d. (independent, identically distributed) random vars


$$
\operatorname{Pr}\left(\lim _{n \rightarrow \infty}\left(\frac{X_{1}+\cdots+X_{n}}{n}\right)=\mu\right)=1
$$

Strong Law $\Rightarrow$ Weak Law (but not vice versa)
Strong law implies that for any $\varepsilon>0$, there are only a finite number of n satisfying the weak law condition $|\bar{X}-\mu| \geq \epsilon$ (almost surely, i.e., with probability I)

Weak Law:

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|\frac{X_{1}+\cdots+X_{n}}{n}-\mu\right|>\epsilon\right)=0
$$

Strong Law:

$$
\operatorname{Pr}\left(\lim _{n \rightarrow \infty}\left(\frac{X_{1}+\cdots+X_{n}}{n}\right)=\mu\right)=1
$$

How do they differ? Imagine an infinite 2d table, whose rows are indp repeats of the infinite sample Xi. Pick $\varepsilon$. Imagine cell $m, n$ lights up if average of $I^{\text {st }} n$ samples in row $m$ is $>\varepsilon$ away from $\mu$.
WLLN says fraction of lights in $\mathrm{n}^{\text {th }}$ column goes to zero as $\mathrm{n} \rightarrow \infty$. It does not prohibit every row from having $\infty$ lights, so long as frequency declines.
SLLN says every row has only finitely many lights (with probability I).

## sample mean $\rightarrow$ population mean



## sample mean $\rightarrow$ population mean



## demo

## another example





Note: $D_{n}=E\left[\left|\Sigma_{1 \leq i \leq n}\left(X_{i}-\mu\right)\right|\right]$ grows with $n$, but $D_{n} / n \rightarrow 0$

Justifies the "frequency" interpretation of probability
"Regression toward the mean"
Gambler's fallacy: "l'm due for a win!"
"Swamps, but does not compensate"
"Result will usually be close to the mean"


Many web demos, e.g. http://stat-www.berkeley.edu/~stark/Java/Html//ln.htm
$X$ is a normal random variable $X \sim N\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
f(x) & =\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} \\
E[X] & =\mu \quad \operatorname{Var}[X]=\sigma^{2}
\end{aligned}
$$


i.i.d. (independent, identically distributed) random vars

$$
X_{1}, X_{2}, X_{3}, \ldots
$$

$\mathrm{X}_{\mathrm{i}}$ has $\mu=\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]<\infty$ and $\sigma^{2}=\operatorname{Var}\left[\mathrm{X}_{\mathrm{i}}\right]<\infty$
As $n \rightarrow \infty$,

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

Restated: As $\mathrm{n} \rightarrow \infty$,

$$
\frac{X_{1}+X_{2}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \longrightarrow N(0,1)
$$

Note: on slide 5, showed sum of normals is exactly normal. Maybe not a surprise, given that sums of almost anything become approximately normal...

## demo



## CLT applies even to whacky distributions







## CLT in the real world

CLT is the reason many things appear normally distributed Many quantities $=$ sums of (roughly) independent random vars

Exam scores: sums of individual problems
People's heights: sum of many genetic \& environmental factors Measurements: sums of various small instrument errors

Human height is approximately normal.

Why might that be true?
R.A. Fisher (1918) noted it would follow from CLT if height were the sum of
 many independent random effects, e.g. many genetic factors (plus some environmental ones like diet). l.e., suggested part of mechanism by looking at shape of the curve.

Roll 10 6-sided dice
$X=$ total value of all 10 dice Win if: $X \leq 25$ or $X \geq 45$

$\operatorname{Var}[X]=\operatorname{Var}\left[\sum_{i=1}^{10} X_{i}\right]=10 \operatorname{Var}\left[X_{1}\right]=10(35 / 12)=350 / 12$
$P($ win $)=1-P(25.5 \leq X \leq 45.5)=$

$$
\begin{aligned}
& 1-P\left(\frac{25.5-35}{\sqrt{350 / 12}} \leq \frac{X-35}{\sqrt{350 / 12}} \leq \frac{45.5-35}{\sqrt{350 / 12}}\right) \\
& \approx 2(1-\Phi(1.76)) \approx 0.079
\end{aligned}
$$

Distribution of $X+Y$ : summations, integrals (or MGF)
Distribution of $X+Y \neq$ distribution $X$ or $Y$ in general
Distribution of $X+Y$ is normal if $X$ and $Y$ are normal
(ditto for a few other special distributions)
Sums generally don't "converge," but averages do:
Weak Law of Large Numbers
Strong Law of Large Numbers

Most surprisingly, averages all converge to the same distribution: the Central Limit Theorem says sample mean $\rightarrow$ normal
[Note that (*) essentially a prerequisite, and that (*) is exact, whereas CLT is approximate]

