CSE 312 Autumn 2012

The Expectation-Maximization
Algorithm

II/I9 Puzzler

Two slips of paper in a hat: $\mu=3$ and $\mu=7$. You draw one, then (without revealing μ) reveal a single sample $X \sim \operatorname{Normal}\left(\right.$ mean $\left.\mu, \sigma^{2}=1\right)$.

You happen to draw $X=6.001$.
Dr. D. says "your slip $=7$." What is P (correct)?
What if X had been 4.9 ?

A Hat Trick

Let " $X \approx 6$ " be a shorthand for $6.001-\delta / 2<X<6.001+\delta / 2$

$$
\begin{aligned}
P(\mu=7 \mid X=6) & =\lim _{\delta \rightarrow 0} P(\mu=7 \mid X \approx 6) \\
P(\mu=7 \mid X \approx 6) & =\frac{P(X \approx 6 \mid \mu=7) P(\mu=7)}{P(X \approx 6)} \\
& =\frac{0.5 P(X \approx 6 \mid \mu=7)}{0.5 P(X \approx 6 \mid \mu=3)+0.5 P(X \approx 6 \mid \mu=7)} \\
& \approx \frac{f(X=6 \mid \mu=7) \delta}{f(X=6 \mid \mu=3) \delta+f(X=6) \mid \mu=7) \delta}, \text { so } \\
P(\mu=7 \mid X=6) & =\frac{f(X=6 \mid \mu=7)}{f(X=6 \mid \mu=3)+f(X=6) \mid \mu=7)} \approx 0.982
\end{aligned}
$$

Another Hat Trick

Two secret numbers, μ pink and μ blue
On pink slips, many samples of $\operatorname{Normal}\left(\mu_{\text {pink, }} \sigma^{2}=1\right)$,
Ditto on blue slips, from $\operatorname{Normal(\mu blue,~} \sigma 2=1)$.
Based on 16 of each, how would you "guess" the secrets (where "success" means your guess is within ± 0.5 of each secret)?
Roughly how likely is it that you will succeed?

Hat Trick (cont.)

Pink/blue $=$ red herrings; separate $\&$ independent
Given $X_{1}, \ldots, X_{16} \sim N\left(\mu, \sigma^{2}\right), \quad \sigma^{2}=1$
Calculate $Y=\left(X_{1}+\ldots+X_{16}\right) / 16 \sim N(?, ?)$
$\mathrm{E}[\mathrm{Y}]=\mu$
$\operatorname{Var}(Y)=16 \sigma^{2} / 16^{2}=\sigma^{2} / 16=1 / 16$
"Y within $\pm .5$ of μ " $=$ " Y within $\pm 2 \sigma$ of μ " $\approx 95 \%$ prob

Note I: Y is a point estimate for μ; $Y \pm 2 \sigma$ is a 95% confidence interval for μ (More on this topic later)

Histogram of 1000 samples of the average of $16 \mathrm{~N}(0,1)$ RVs

Hat Trick (cont.)

Note 2: red/blue separation is just like the M-step of EM if values of the hidden variables (\boldsymbol{z}_{i}) were known.
What if they're not? E.g., what would you do if some of the slips you pulled had coffee spilled on them, obscuring color?

If they were half way between means of the others?
If they were on opposite sides of the means of the others

Previously:
 How to estimate μ given data

For this problem, we got a nice, closed form, solution, allowing calculation of the μ, σ that maximize the likelihood of the observed data.

We're not always so lucky...

More Complex Example

This?

Or this?
(A modeling decision, not a math problem..., but if the later, what math?)

A Living Histogram

male and female genetics students, University of Connecticut in 1996
http://mindprod.com/igloss/histogram.html

A Real Example:
CpG content of human gene promoters

"A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters" Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417

Gaussian Mixture Models / Model-based Clustering

Parameters θ
means
variances
mixing parameters τ_{1}
P.D.F. $\underset{\text { separately }}{\text { soren }} f\left(x \mid \mu_{1}, \sigma_{1}^{2}\right) \quad f\left(x \mid \mu_{2}, \sigma_{2}^{2}\right)$

Likelihood

$$
\begin{array}{rll}
L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \tau_{1}, \tau_{2}\right) & \text { No } \\
=\prod_{i=1}^{n} \sum_{j=1}^{2} \tau_{j} f\left(x_{i} \mid \mu_{j}, \sigma_{j}^{2}\right) & \begin{array}{l}
\text { closec } \\
\text { form } \\
\text { max } \\
\text { cos }
\end{array}
\end{array}
$$

Likelihood Surface

A What-lf Puzzle

Likelihood
θ

$$
\left.\begin{array}{rl}
L\left(x_{1}, x_{2}, \ldots, x_{n}\right. & \overbrace{\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \tau_{1}, \tau_{2}}
\end{array}\right)
$$

Messy: no closed form solution known for finding θ maximizing L

But what if we knew the hidden data?

$$
z_{i j}= \begin{cases}1 & \text { if } x_{i} \text { drawn from } f_{j} \\ 0 & \text { otherwise }\end{cases}
$$

EM as Egg vs Chicken

IF $z_{i j}$ known, could estimate parameters θ
E.g., only points in cluster 2 influence μ_{2}, σ_{2}

IF parameters θ known, could estimate $z_{i j}$

$$
\text { E.g., }\left|x_{i}-\mu_{1}\right| / \sigma_{1}<\left|x_{i}-\mu_{2}\right| / \sigma_{2} \Rightarrow P\left[z_{i}=1\right] \gg P\left[z_{i 2}=1\right]
$$

\square
But we know neither; (optimistically) iterate:
E : calculate expected z_{i}, given parameters
M: calc "MLE" of parameters, given $E\left(z_{i j}\right)$
Overall, a clever "hill-climbing" strategy

Simple Version: "Classification EM"

If $\mathrm{E}\left[\mathrm{z}_{\mathrm{i}}\right]$ < 5 , pretend $\mathrm{z}_{\mathrm{ij}}=0$; $\mathrm{E}\left[\mathrm{z}_{\mathrm{i}}\right]$ > .5, pretend it's I
I.e., classify points as component 0 or I

Now recalc θ, assuming that partition (standard MLE)
Then recalc $\mathrm{E}\left[\mathrm{z}_{\mathrm{i}}\right]$, assuming that θ
Then re-recalc θ, assuming new $\mathrm{E}\left[\mathrm{z}_{\mathrm{i}]}\right]$, etc., etc.
"Full EM" is a bit more involved, (to account for uncertainty in classification) but this is the crux.

Full EM

x_{i} 's are known; θ unknown. Goal is to find MLE θ of:

$$
L\left(x_{1}, \ldots, x_{n} \mid \theta\right)
$$

Would be easy if $z_{i j}$'s were known, i.e., consider:

$$
L\left(x_{1}, \ldots, x_{n}, z_{11}, z_{12}, \ldots, z_{n 2} \mid \theta\right) \quad \text { (complete data ilikeilioood) }
$$

But $z_{i j}$'s aren't known.
Instead, maximize expected likelihood of visible data

$$
E\left(L\left(x_{1}, \ldots, x_{n}, z_{11}, z_{12}, \ldots, z_{n 2} \mid \theta\right)\right)
$$

where expectation is over distribution of hidden data ($z_{i j}$'s)

The E-step:

 Find $E\left(z_{i j}\right)$, i.e., $P\left(z_{i j}=I\right)$Assume θ known \& fixed
A (B): the event that x_{i} was drawn from $f_{l}\left(f_{2}\right)$
D: the observed datum x_{i}
Expected value of z_{i} is $\mathrm{P}(\mathrm{A} \mid \mathrm{D})$

$$
\begin{aligned}
P(A \mid D) & =\frac{P(D \mid A) P(A)}{P(D)} \\
P(D) & =P(D \mid A) P(A)+P(D \mid B) P(B) \\
& =f_{1}\left(x_{i} \mid \theta_{1}\right) \tau_{1}+f_{2}\left(x_{i} \mid \theta_{2}\right) \tau_{2}
\end{aligned}
$$

Repeat for each x_{i}

A Hat Trick

Let " $X \approx 6$ " be a shorthand for $6.001-\delta / 2<X<6.001+\delta / 2$

$$
\begin{aligned}
P(\mu=7 \mid X=6) & =\lim _{\delta \rightarrow 0} P(\mu=7 \mid X \approx 6) \\
P(\mu=7 \mid X \approx 6) & =\frac{P(X \approx 6 \mid \mu=7) P(\mu=7)}{P(X \approx 6)} \\
& =\frac{0.5 P(X \approx 6 \mid \mu=7)}{0.5 P(X \approx 6 \mid \mu=3)+0.5 P(X \approx 6 \mid \mu=7)} \\
& \approx \frac{f(X=6 \mid \mu=7) \delta}{f(X=6 \mid \mu=3) \delta+f(X=6) \mid \mu=7) \delta}, \text { so } \\
P(\mu=7 \mid X=6) & =\frac{f(X=6 \mid \mu=7)}{f(X=6 \mid \mu=3)+f(X=6) \mid \mu=7)} \approx 0.982
\end{aligned}
$$

Complete Data Likelihood

Recall:

$$
z_{1 j}= \begin{cases}1 & \text { if } x_{1} \text { drawn from } f_{j} \\ 0 & \text { otherwise }\end{cases}
$$

so, correspondingly,

$$
L\left(x_{1}, z_{1 j} \mid \theta\right)= \begin{cases}\tau_{1} f_{1}\left(x_{1} \mid \theta\right) & \text { if } z_{11}=1 \\ \tau_{2} f_{2}\left(x_{1} \mid \theta\right) & \text { otherwise }\end{cases}
$$

Formulas with "if's" are messy; can we blend more smoothly? Yes, many possibilities. Idea 1:

$$
L\left(x_{1}, z_{1 j} \mid \theta\right)=z_{11} \cdot \tau_{1} f_{1}\left(x_{1} \mid \theta\right)+z_{12} \cdot \tau_{2} f_{2}\left(x_{1} \mid \theta\right)
$$

Idea 2 (Better):

$$
L\left(x_{1}, z_{1 j} \mid \theta\right)=\left(\tau_{1} f_{1}\left(x_{1} \mid \theta\right)\right)^{z_{11}} \cdot\left(\tau_{2} f_{2}\left(x_{1} \mid \theta\right)\right)^{z_{12}}
$$

M-step:

Find θ maximizing $E(\log ($ Likelihood $))$

(For simplicity, assume $\sigma_{1}=\sigma_{2}=\sigma ; \tau_{1}=\tau_{2}=.5=\tau$)
$E[\log L(\vec{x}, \vec{z} \mid \theta)]=E\left[\sum_{1 \leq i \leq n}\left(\log \tau-\frac{1}{2} \log 2 \pi \sigma^{2}-\sum_{1 \leq j \leq 2} z_{i j} \frac{\left(x_{i}-\mu_{j}\right)^{2}}{2 \sigma^{2}}\right)\right]$
wrt dist of $z_{i j}$

$$
=\sum_{1 \leq i \leq n}\left(\log \tau-\frac{1}{2} \log 2 \pi \sigma^{2}-\sum_{1 \leq j \leq 2} E\left[z_{i j}\right] \frac{\left(x_{i}-\mu_{j}\right)^{2}}{2 \sigma^{2}}\right)
$$

Find θ maximizing this as before, using $E\left[z_{i j}\right]$ found in E-step. Result:

$$
\mu_{j}=\sum_{i=1}^{n} E\left[z_{i j}\right] x_{i} / \sum_{i=1}^{n} E\left[z_{i j}\right] \text { (intuit: avg, weighted by subpop prob) }
$$

Hat Trick (cont.)

Note 2: red/blue separation is just like the M-step of EM if values of the hidden variables $\left(z_{i}\right)$ were known. What if they're not? E.g., what would you do if some of the slips you pulled had coffee spilled on them, obscuring color?

If they were half way between means of the others?
If they were on opposite sides of the means of the others

2 Component Mixture

$$
\sigma_{1}=\sigma_{2}=1 ; \tau=0.5
$$

		mu1	-20.00		-6.00		-5.00		-4.99
		mu2	6.00		0.00		3.75		3.75
x1	-6	211		5.11E-12		$1.00 \mathrm{E}+00$		$1.00 \mathrm{E}+00$	
$\times 2$	-5	z21		$2.61 \mathrm{E}-23$		$1.00 \mathrm{E}+00$		$1.00 \mathrm{E}+00$	
x3	-4	z31		$1.33 \mathrm{E}-34$		$9.98 \mathrm{E}-01$		$1.00 \mathrm{E}+00$	
$\times 4$	0	241		$9.09 \mathrm{E}-80$		$1.52 \mathrm{E}-08$		$4.11 \mathrm{E}-03$	
x5	4	251		$6.19 \mathrm{E}-125$		5.75E-19		$2.64 \mathrm{E}-18$	
x6	5	z61		3.16E-136		$1.43 \mathrm{E}-21$		$4.20 \mathrm{E}-22$	
x7	6	271		1.62E-147		$3.53 \mathrm{E}-24$		$6.69 \mathrm{E}-26$	

Essentially converged in 2 iterations
(Excel spreadsheet on course web)

Applications

Clustering is a remarkably successful exploratory data analysis tool

Web-search, information retrieval, gene-expression, ...
Model-based approach above is one of the leading ways to do it Gaussian mixture models widely used

With many components, empirically match arbitrary distribution Often well-justified, due to "hidden parameters" driving the visible data

EM is extremely widely used for "hidden-data" problems Hidden Markov Models - speech recognition, DNA analysis, ...

EM Summary

Fundamentally a maximum likelihood parameter estimation problem

Useful if $0 / I$ hidden data, and if analysis would be more tractable if hidden data z were known

Iterate:
E-step: estimate $E(z)$ for each z, given θ
M-step: estimate θ maximizing E[log likelihood]
given $E[z]$ [where "E[log L $]$ " is wrt random $\mathrm{z} \sim \mathrm{E}[\mathrm{z}]=\mathrm{p}(\mathrm{z}=\mathrm{I})$]

EM Issues

Under mild assumptions, EM is guaranteed to increase likelihood with every E-M iteration, hence will converge.
But it may converge to a local, not global, max. (Recall the 4-bump surface...)
Issue is intrinsic (probably), since EM is often applied to problems (including clustering, above) that are NP-hard (so fast alg is unlikely)
Nevertheless, widely used, often effective

