4. Conditional Probability
 $$
\text { BT I.3, I. } 4
$$

CSE 312
Autumn 2013

W.L. Ruzzo

conditional probability

Conditional probability of E given F: probability that E occurs given that F has occurred.
"Conditioning on F"
Written as $\mathrm{P}(\mathrm{E} \mid \mathrm{F})$
Means " $P(E$ happened, given F observed)"
Sample space S reduced to those
elements consistent with F (i.e. $\mathrm{S} \cap \mathrm{F}$)
Event space E reduced to those elements consistent with F (i.e. $E \cap F$)
With equally likely outcomes:

$P(E \mid F)=\frac{\# \text { of outcomes in } E \text { consistent with } F}{\# \text { of outcomes in } S \text { consistent with } F}=\frac{|E F|}{|S F|}=\frac{|E F|}{|F|}$
$P(E \mid F)=\frac{|E F|}{|F|}=\frac{|E F| /|S|}{|F| /|S|}=\frac{P(E F)}{P(F)}$

Roll one fair die. What is the probability that the outcome is 5 given that it's odd?
$E=\{5\} \quad$ event that roll is 5
$F=\{I, 3,5\}$ event that roll is odd
Way I (from counting):

$$
P(E \mid F)=|E F| /|F|=|E| /|F|=I / 3
$$

Way 2 (from probabilities):

$$
P(E \mid F)=P(E F) / P(F)=P(E) / P(F)=(I / 6) /(I / 2)=I / 3
$$

Way 3 (from restricted sample space):
All outcomes are equally likely. Knowing F occurred doesn't distort relative likelihoods of outcomes within F, so they remain equally likely. There are only 3 of them, one being E , so
$P(E \mid F)=I / 3$

Suppose you flip two coins \& all outcomes are equally likely.
What is the probability that both flips land on heads if...

- The first flip lands on heads?

$$
\begin{aligned}
& \text { Let } B=\{H H\} \text { and } F=\{H H, H T\} \\
& \begin{aligned}
P(B \mid F) & =P(B F) / P(F)=P(\{H H\}) / P(\{H H, H T\}) \\
& =(1 / 4) /(2 / 4)=1 / 2
\end{aligned}
\end{aligned}
$$

- At least one of the two flips lands on heads?

Let $\mathrm{A}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}\}$
$P(B \mid A)=|B A| /|A|=I / 3$

- At least one of the two flips lands on tails?

$$
\begin{aligned}
& \text { Let } G=\{T H, H T, T T\} \\
& P(B \mid G)=P(B G) / P(G)=P(\varnothing) / P(G)=0 / P(G)=0
\end{aligned}
$$

24 emails are sent, 6 each to 4 users.
10 of the 24 emails are spam.
All possible outcomes equally likely.

$$
E=\text { user \#l receives } 3 \text { spam emails }
$$

What is $P(E)$?

$$
P(E)=\frac{|E|}{|S|}=\frac{\binom{10}{3}\binom{14}{3}\binom{18}{6}\binom{12}{6}\binom{6}{6}}{\binom{24}{6}\binom{18}{6}\binom{12}{6}\binom{6}{6}} \approx 0.3245
$$

24 emails are sent, 6 each to 4 users.
10 of the 24 emails are spam.
All possible outcomes equally likely

$$
\begin{aligned}
& E=\text { user } \# l \text { receives } 3 \text { spam emails } \\
& F=\text { user } \# 2 \text { receives } 6 \text { spam emails }
\end{aligned}
$$

What is $\mathrm{P}(\mathrm{E} \mid \mathrm{F})$?
$P(E \mid F)=\frac{|E F|}{|F|}=\frac{\binom{10}{6}\binom{4}{3}\binom{14}{3}\binom{12}{6}\binom{6}{6}}{\binom{10}{6}\binom{18}{6}\binom{12}{6}\binom{6}{6}} \approx 0.0784$

24 emails are sent, 6 each to 4 users.
10 of the 24 emails are spam.
All possible outcomes equally likely
$E=$ user $\# I$ receives 3 spam emails
$F=$ user $\# 2$ receives 6 spam emails
$G=$ user $\# 3$ receives 5 spam emails

What is $P(G \mid F)$?
$P(G \mid F)=\frac{|G F|}{|F|}=\frac{\binom{10}{6}\binom{4}{5}\binom{14}{1}\binom{12}{6}\binom{6}{6}}{\binom{10}{6}\binom{18}{6}\binom{12}{6}\binom{6}{6}}=0$
conditional probability
General defn: $P(E \mid F)=\frac{P(E F)}{P(F)}$ where $\mathrm{P}(\mathrm{F})>0$
Holds even when outcomes are not equally likely.

Example: $S=\{\#$ of heads in 2 coin flips $\}=\{0, I, 2\}$
NOT equally likely outcomes: $P(0)=P(2)=I / 4, P(I)=I / 2$
Q. What is prob of 2 heads (E) given at least I head (F) ?
A. $P(E F) / P(F)=P(E) / P(F)=(I / 4) /(I / 4+I / 2)=1 / 3$

Same as earlier formulation of this example (of course!)
conditional probability: the chain rule
General defn: $P(E \mid F)=\frac{P(E F)}{P(F)}$ where $\mathrm{P}(\mathrm{F})>0$
Holds even when outcomes are not equally likely.
What if $P(F)=0$?
$P(E \mid F)$ undefined: (you can't observe the impossible)
Implies (when (PF)>0): $\mathrm{P}(\mathrm{EF})=\mathrm{P}(\mathrm{E} \mid \mathrm{F}) \mathrm{P}(\mathrm{F}) \quad$ ("the chain rule")
General definition of Chain Rule:

$$
\begin{aligned}
& P\left(E_{1} E_{2} \cdots E_{n}\right)= \\
& \quad P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1}, E_{2}\right) \cdots P\left(E_{n} \mid E_{1}, E_{2}, \ldots, E_{n-1}\right)
\end{aligned}
$$

piling cards

Deck of 52 cards randomly divided into 4 piles
13 cards per pile
Compute P (each pile contains an ace)
Solution:

$$
\begin{aligned}
& E_{1}=\{\square \text { in any one pile }\} \\
& \mathrm{E}_{2}=\left\{\bullet \& \bullet_{i}^{+} \text {in different piles }\right\} \\
& \mathrm{E}_{3}=\left\{{ }^{*},{ }^{2} \text { in different piles }\right\}
\end{aligned}
$$

$E_{4}=\{$ all four aces in different piles $\}$

Compute $\mathrm{P}\left(\mathrm{E}_{1} \mathrm{E}_{2} \mathrm{E}_{3} \mathrm{E}_{4}\right)$

$E_{4}=\{$ all four aces in different piles $\}$
$P\left(E_{1} E_{2} E_{3} E_{4}\right)$
$=P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1} E_{2}\right) P\left(E_{4} \mid E_{1} E_{2} E_{3}\right)$

$$
\begin{aligned}
& E_{1}=\{\vee \text { in any one pile }\} \\
& E_{2}=\left\{\bullet \&{ }^{\bullet} \text { in different piles }\right\} \\
& E_{3}=\left\{\bullet, \omega_{i}^{*} \text { in different piles }\right\} \\
& E_{4}=\{\text { all four aces in different piles }\} \\
& P\left(E_{1} E_{2} E_{3} E_{4}\right)=P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1} E_{2}\right) P\left(E_{4} \mid E_{1} E_{2} E_{3}\right) \\
& P\left(E_{1}\right) \quad=52 / 52=I(A \cup \text { can go anywhere }) \\
& P\left(E_{2} \mid E_{1}\right) \quad=39 / 5 I \text { (39 of } 51 \text { slots not in } A \bullet \text { pile) } \\
& P\left(E_{3} \mid E_{1} E_{2}\right) \quad=26 / 50(26 \text { not in } A \cup, A \uparrow \text { piles }) \\
& P\left(E_{4} \mid E_{\mid} E_{2} E_{3}\right)=13 / 49(13 \text { not in } A \bullet, A \backslash, A \downarrow \text { piles }) \\
& \text { A conceptual trick: what's } \\
& \text { randomized? } \\
& \text { a) randomize cards, deal } \\
& \text { sequentially into } 4 \text { piles } \\
& \text { b) sort cards, aces first, deal } \\
& \text { randomly into empty } \\
& \text { slots among } 4 \text { piles. }
\end{aligned}
$$

$E_{4}=\{$ all four aces in different piles $\}$
$P\left(E_{1} E_{2} E_{3} E_{4}\right)$

$$
\begin{aligned}
& =P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1} E_{2}\right) P\left(E_{4} \mid E_{1} E_{2} E_{3}\right) \\
& =(52 / 52) \cdot(39 / 5 I) \cdot(26 / 50) \cdot(13 / 49) \\
& \approx 0.105
\end{aligned}
$$

conditional probability is probability

BT p. 19
" $P(-\mid F)$ " is a probability law, i.e., satisfies the 3 axioms
Proof:
the idea is simple-the sample space contracts to F ; dividing all (unconditional) probabilities by $P(F)$ correspondingly renormalizes the probability measure - see text for details; better yet, try it!
$E x: P(A \cup B) \leq P(A)+P(B)$
$\therefore P(A \cup B \mid F) \leq P(A \mid F)+P(B \mid F)$
$E x: P(A)=I-P\left(A^{C}\right)$
$\therefore P(A \mid F)=I-P\left(A^{C} \mid F\right)$
etc.

Bit string with m I's and n 0 's sent on the network
All distinct arrangements of bits equally likely
$E=$ first bit received is a 0
$F=k$ of first r bits received are 0's
What's $P(E \mid F)$?
Solution I ("restricted sample space"):
Observe:

$$
P(E \mid F)=P(\text { picking one of } k 0 \text { 's out of } r \text { bits })
$$

So:

$$
P(E \mid F)=k / r
$$

sending bit strings

Bit string with m I's and n 0 's sent on the network
All distinct arrangements of bits equally likely
$E=$ first bit received is a 0
$F=k$ of first r bits received are 0's
What's $P(E \mid F)$?
Solution 2 (counting):
$E F=\left\{(n+m)\right.$-bit strings $\mid I^{\text {st }}$ bit $=0 \&(k-I) 0$'s in the next $\left.(r-I)\right\}$

$$
|E F|=\binom{r-1}{k-1}\binom{n+m-r}{n-k}
$$

$$
|F|=\binom{r}{k}\binom{n+m-r}{n-k}
$$

$P(E \mid F)=\frac{|E F|}{|F|}=\frac{\binom{r-1}{k-1}\binom{n+m-r}{n-k}}{\binom{r}{k}\binom{n+m-r}{n-k}}=\frac{\binom{r-1}{k-1}\binom{n+m-r}{n-k}}{\left(\frac{r}{k}\binom{r-1}{k-1}\binom{n+m-r}{n-k}\right.}=\frac{k}{r}$

sending bit strings

Bit string with m I's and n 0 's sent on the network
All distinct arrangements of bits equally likely
$E=$ first bit received is a 0
$F=k$ of first r bits received are 0's
What's $P(E \mid F)$?
Solution 3 (more fun with conditioning):

$$
\begin{aligned}
& P(E)=\frac{n}{m+n} \quad P(F \mid E)=\frac{\binom{n-1}{k-1}\binom{m}{r-k}}{\binom{m+n-1}{r-1}}
\end{aligned}
$$

$$
\begin{aligned}
& P(E \mid F)=\frac{P(E F)}{P(F)}=\frac{P(F \mid E) P(E)}{P(F)}=\cdots=\frac{k}{r} \\
& \text { Above eqns, } \\
& \text { plus the same } \\
& \text { binomial } \\
& \text { identity twice. }
\end{aligned}
$$

law of total probability

E and F are events in the sample space S

$$
E=E F \cup E F c
$$

$\mathrm{EF} \cap \mathrm{EF}^{\mathrm{c}}=\varnothing$

$$
\Rightarrow P(E)=P(E F)+P\left(E F^{c}\right)
$$

$$
\begin{aligned}
P(E) & =P(E F)+P\left(E^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right)(I-P(F))
\end{aligned}
$$

More generally, if $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{\mathrm{n}}$ partition S (mutually
exclusive, $\left.U_{i} F_{i}=S, P\left(F_{i}\right)>0\right)$, then

$$
P(E)=\sum_{i} P\left(E \mid F_{i}\right) P\left(F_{i}\right)
$$

weighted average, conditioned on events
F_{i} happening or not.
(Analogous to reasoning by cases; both are very handy.)

Sally has I elective left to take: either Phys or Chem. She will get A with probability $3 / 4$ in Phys, with prob $3 / 5$ in Chem. She flips a coin to decide which to take.

What is the probability that she gets an A ?

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A}) & =\mathrm{P}(\mathrm{~A} \mid \text { Phys }) \mathrm{P}(\text { Phys })+\mathrm{P}(\mathrm{~A} \mid \text { Chem }) \mathrm{P}(\text { Chem }) \\
& =(3 / 4)(\mathrm{I} / 2)+(3 / 5)(\mathrm{I} / 2) \\
& =27 / 40
\end{aligned}
$$

Note that conditional probability was a means to an end in this example, not the goal itself. One reason conditional probability is important is that this is a common scenario.

2 Gamblers: Alice \& Bob.
A has i dollars; B has ($\mathrm{N}-\mathrm{i}$)
Flip a coin. Heads - A wins \$ 1 ;Tails - B wins \$ Repeat until A or B has all N dollars
What is $\mathrm{P}(\mathrm{A}$ wins)?
Let $\mathrm{E}_{\mathrm{i}}=$ event that A wins starting with $\$ \mathrm{i}$ Approach: Condition on ${ }^{\text {st }}$ flip; $\mathrm{H}=$ heads

aka "Drunkard's Walk"
nice example of the utility of conditioning: future decomposed into two crisp cases instead of being a blurred superposition thereof

$$
\begin{aligned}
p_{i} & =P\left(E_{i}\right)=P\left(E_{i} \mid H\right) P(H)+P\left(E_{i} \mid T\right) P(T) \\
p_{i} & =\frac{1}{2}\left(p_{i+1}+p_{i-1}\right) \\
2 p_{i} & =p_{i+1}+p_{i-1} \\
p_{i+1}-p_{i} & =p_{i}-p_{i-1} \\
p_{2}-p_{1} & =p_{1}-p_{0}=p_{1}, \text { since } p_{0}=0
\end{aligned} \quad\left\{\begin{aligned}
\text { So: } p_{2} & =2 p_{1} \\
& \cdots \\
p_{i} & =i p_{1} \\
p_{N} & =N p_{1}=1 \\
p_{i} & =i / N
\end{aligned}\right.
$$

6 balls in an urn, some red, some white

Probability of drawing 3 red balls, given 3 in urn?

> Probability of 3 red balls in urn, given that I drew three?

the theory

that would
Whtho not die how bayes' rule cracked as. the enigma code, hunted down russian submarines \& emerged triumphant from two e centuries of controversy sharon bertsch mcgrayne

Yale University Press, 2011
ISBN-13: 978-0300188226
http://www.amazon.com/Theory-That-Would-Not-Die/dp/0300188226/

Bayes Theorem

"Improbable Inspiration: The future of software may lie in the obscure theories of an $18^{\text {th }}$ century cleric named Thomas Bayes"
Los Angeles Times (October 28, 1996)
By Leslie Helm,Times Staff Writer
"When Microsoft Senior Vice President
 Steve Ballmer [now CEO] first heard his company was
 planning a huge investment in an Internet service offering... he went to Chairman Bill Gates with his concerns...

Gates began discussing the critical role of "Bayesian" systems..."
source: http://www.ar-tiste.com/latimes_oct-96.html

Bayes Theorem

Most common form:

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E)}
$$

Expanded form (using law of total probability):

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)}
$$

Proof:

$$
P(F \mid E)=\frac{P(E F)}{P(E)}=\frac{P(E \mid F) P(F)}{P(E)}
$$

Bayes Theorem

Most common form:

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E)}
$$

Expanded form (using law of total probability):

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)}
$$

Why it's important:
Reverse conditioning
$\mathrm{P}($ model | data $) \sim \mathrm{P}($ data | model $)$
Combine new evidence (E) with prior belief ($\mathrm{P}(\mathrm{F})$)
Posterior vs prior

Bayes Theorem

An urn contains 6 balls, either 3 red +3 white or all 6 red. You draw 3; all are red.
Did urn have only 3 red?

Can't tell!

Suppose it was $3+3$ with probability $p=3 / 4$.

Did urn have only 3 red?
$M=$ urn has 3 red +3 white
$D=1$ drew 3 red

$$
P(D \mid M)=\binom{3}{3} /\binom{6}{3}=\frac{1}{20}
$$

$$
P(M \mid D)=\frac{P(D \mid M) P(M)}{P(D \mid M) P(M)+P\left(D \mid M^{c}\right) P\left(M^{c}\right)}
$$

$$
=\frac{\left(\frac{1}{20}\right)\left(\frac{3}{4}\right)}{\left(\frac{1}{20}\right)\left(\frac{3}{4}\right)+(1)\left(1-\frac{3}{4}\right)}=\frac{3}{23}
$$

Say that 60\% of email is spam

90\% of spam has a forged header

20\% of non-spam has a forged header
Let $F=$ message contains a forged header
Let $J=$ message is spam
What is $P(J \mid F)$?
Solution:

$$
\begin{aligned}
P(J \mid F) & =\frac{P(F \mid J) P(J)}{P(F \mid J) P(J)+P\left(F \mid J^{c}\right) P\left(J^{c}\right)} \\
& =\frac{(0.9)(0.6)}{(0.9)(0.6)+(0.2)(0.4)} \\
& \approx 0.871
\end{aligned}
$$

simple spam detection

Say that 60\% of email is spam
10\% of spam has the word "Viagra"
I\% of non-spam has the word "Viagra"
Let $V=$ message contains the word "Viagra"
Let $J=$ message is spam
What is $P(J \mid V)$?
Solution:

$$
\begin{aligned}
P(J \mid V) & =\frac{P(V \mid J) P(J)}{P(V \mid J) P(J)+P\left(V \mid J^{c}\right) P\left(J^{c}\right)} \\
& =\frac{(0.1)(0.6)}{(0.1)(0.6)+(0.01)(1-0.6)} \\
& \approx 0.9375
\end{aligned}
$$

DNA paternity testing

Child is born with (A, a) gene pair (event $B_{A, a}$)
Mother has (A, A) gene pair
Two possible fathers: $M_{1}=(a, a), M_{2}=(a, A)$

$$
P\left(M_{1}\right)=p, P\left(M_{2}\right)=I-p
$$

What is $P\left(M_{1} \mid B_{A, 2}\right)$?
Solution:

$$
\begin{aligned}
P & \left(M_{1} \mid B_{A a}\right) \\
& =\frac{P\left(B_{A a} \mid M_{1}\right) P\left(M_{1}\right)}{P\left(B_{A a} \mid M_{1}\right) P\left(M_{1}\right)+P\left(B_{A a} \mid M_{2}\right) P\left(M_{2}\right)} \\
& =\frac{1 \cdot p}{1 \cdot p+0.5(1-p)}=\frac{2 p}{1+p}>\frac{2 p}{1+1}=p \quad \underset{\mathrm{I} / 2 \rightarrow 2 / 3}{\mathrm{I} . \mathrm{g}, \mathrm{t}} \rightarrow
\end{aligned}
$$

I.e., the given data about child raises probability that $M_{\text {I }}$ is father

Suppose an HIV test is 98% effective in detecting HIV, i.e., its "false negative" rate $=2 \%$. Suppose furthermore, the test's "false positive" rate $=1 \%$.
0.5\% of population has HIV

Let $\mathrm{E}=$ you test positive for HIV
Let $F=$ you actually have HIV
What is $\mathrm{P}(\mathrm{F} \mid \mathrm{E})$?
Solution:

$$
\begin{aligned}
P(F \mid E) & =\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)} \\
& =\frac{(0.98)(0.005)}{(0.98)(0.005)+(0.01)(1-0.005)^{*}} \\
& \approx 0.330 \quad \mathrm{P}(E) \approx 1.5 \%
\end{aligned}
$$

Note difference between conditional and joint probability: $P(F \mid E)=33 \% ; P(F E)=0.49 \%$

why testing is still good

$$
\begin{array}{|c|c|c|}
\hline & \text { HIV }+ & \text { HIV- } \\
\hline \text { Test }+ & 0.98=P(E \mid F) & 0.01=P\left(E \mid F^{c}\right) \\
\hline \text { Test }- & 0.02=P\left(E^{c} \mid F\right) & 0.99=P\left(E^{c} \mid F^{c}\right) \\
\hline
\end{array}
$$

Let $\mathrm{E}^{\mathrm{C}}=$ you test negative for HIV
Let $F=$ you actually have HIV
What is $P\left(F \mid E^{C}\right)$?

$$
\begin{aligned}
P\left(F \mid E^{c}\right) & =\frac{P\left(E^{c} \mid F\right) P(F)}{P\left(E^{c} \mid F\right) P(F)+P\left(E^{c} \mid F^{c}\right) P\left(F^{c}\right)} \\
& =\frac{(0.02)(0.005)}{(0.02)(0.005)+(0.99)(1-0.005)} \\
& \approx 0.0001
\end{aligned}
$$

The probabiliy of event E is $P(E)$.

The odds of event E is $\mathrm{P}(\mathrm{E}) /\left(\mathrm{P}\left(\mathrm{E}^{c}\right)\right.$

Example: $\mathrm{A}=$ any of 2 coin flips is H :

$$
P(A)=3 / 4, P\left(A^{c}\right)=1 / 4 \text {, so odds of } A \text { is } 3
$$

(or"3 to I in favor")

Example: odds of having HIV:
$P(F)=.5 \%$ so $P(F) / P\left(F^{c}\right)=.005 / .995$
(or I to I99 against; this is close, but not equal to, $P(F)=I / 200)$

F = some event of interest (say, "HIV+")
E = additional evidence (say,"HIV test was positive")
Prior odds of $\mathrm{F}: ~ \mathrm{P}(\mathrm{F}) / \mathrm{P}\left(\mathrm{F}^{\mathrm{c}}\right)$
What are the Posterior odds of $\mathrm{F}: \mathrm{P}(\mathrm{F} \mid \mathrm{E}) / \mathrm{P}\left(\mathrm{F}^{\mathrm{c}} \mid \mathrm{E}\right)$?

$$
\begin{aligned}
P(F \mid E) & =\frac{P(E \mid F) P(F)}{P(E)} \\
P\left(F^{c} \mid E\right) & =\frac{P\left(E \mid F^{c}\right) P\left(F^{c}\right)}{P(E)} \\
\frac{P(F \mid E)}{P\left(F^{c} \mid E\right)} & =\frac{P(E \mid F)}{P\left(E \mid F^{c}\right)} \cdot \frac{P(F)}{P\left(F^{c}\right)} \\
\binom{\text { posterior }}{\text { odds }} & =\binom{\text { "Bayes }}{\text { factor" }} \cdot\binom{\text { prior }}{\text { odds }}
\end{aligned}
$$

In a way, nothing new here, versus prior results, but the simple form, and the simple interpretation are convenient.
posterior odds from prior odds
Let $\mathrm{E}=$ you test positive for HIV Let $\mathrm{F}=$ you actually have HIV

	HIV +	HIV-
Test +	$0.98=P(E \mid F)$	$0.01=P\left(E \mid F^{c}\right)$
Test -	$0.02=P\left(E^{c} \mid F\right)$	$0.99=P\left(E^{c} \mid F^{c}\right)$

What are the posterior odds?

$$
\frac{P(F \mid E)}{P\left(F^{c} \mid E\right)}=\frac{P(E \mid F)}{P\left(E \mid F^{c}\right)} \frac{P(F)}{P\left(F^{c}\right)}
$$

(posterior odds $=$ "Bayes factor" • prior odds)

$$
=\frac{0.98}{0.01} \cdot \frac{0.005}{0.995}
$$

More likely to test positive if you are positive, so Bayes factor > I; positive test increases odds, 98 -fold in this case, to 2.03:I against (vs prior of 199:I against)
posterior odds from prior odds

Let $\mathrm{F}=$ you actually have HIV		Hiv+	HIV-
	Test +	$0.98=\mathrm{P}($ E\|	$0.01=P\left(E \mid F F^{\text {c }}\right.$)
	Test -	$0.02=\mathrm{P}(\mathrm{EC}$	0.99 P P(

What is the ratio between $\mathrm{P}(\mathrm{F} \mid \mathrm{E})$ and $\mathrm{P}\left(\mathrm{F}^{c} \mid \mathrm{E}\right)$?

$$
\frac{P(F \mid E)}{P\left(F^{c} \mid E\right)}=\frac{P(E \mid F)}{P\left(E \mid F^{c}\right)} \frac{P(F)}{P\left(F^{c}\right)}
$$

(posterior odds $=$ "Bayes factor" \cdot prior odds)

$$
=\frac{0.02}{0.99} \cdot \frac{0.005}{0.995}
$$

Unlikely to test negative if you are positive, so Bayes factor <1; negative test decreases odds 49.5 -fold, to 9850 : I against (vs prior of 199:I against)

simple spam detection

Say that 60\% of email is spam
10\% of spam has the word "Viagra"
I\% of non-spam has the word "Viagra"
Let $V=$ message contains the word "Viagra"
Let $J=$ message is spam
What are posterior odds that a message containing "Viagra" is spam ?

Solution:

$$
\frac{P(J \mid V)}{P\left(J^{c} \mid V\right)}=\frac{P(V \mid J)}{P\left(V \mid J^{c}\right)} \frac{P(J)}{P\left(J^{c}\right)}
$$

(posterior odds $=$ "Bayes factor". prior odds)

$$
15=\frac{0.10}{0.01} \cdot \frac{0.6}{0.4}
$$

Conditional probability

$\mathrm{P}(\mathrm{E} \mid \mathrm{F})$: Conditional probability that E occurs given that F has occurred.
Reduce event/sample space to points consistent w/F (E $\cap \mathrm{F} ; \mathrm{S} \cap \mathrm{F})$

$$
\begin{aligned}
& P(E \mid F)=\frac{P(E F)}{P(F)} \quad(P(F)>0) \\
& P(E \mid F)=\frac{|E F|}{|F|}, \text { if equiprobable outcomes. }
\end{aligned}
$$

$P(E F)=P(E \mid F) P(F) \quad$ ("the chain rule")
" $P(-\mid F)$ " is a probability law, i.e., satisfies the 3 axioms
$P(E)=P(E \mid F) P(F)+P(E \mid F c)(I-P(F)) \quad$ ("the law of total probability")
Bayes theorem

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E)}
$$

prior, posterior, odds, prior odds, posterior odds, Bayes factor

