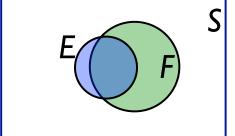
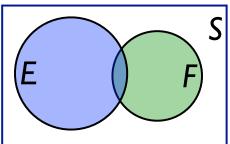
4. Conditional Probability BT 1.3, 1.4

CSE 312 Autumn 2013 W.L. Ruzzo

Conditional probability of E given F: probability that E occurs given that F has occurred. "Conditioning on F" Written as P(E|F) Means "P(E happened, given F observed)" Sample space S reduced to those elements consistent with F (i.e. $S \cap F$) Event space E reduced to those elements consistent with F (i.e. $E \cap F$)

With equally likely outcomes:





$$P(E \mid F) = \frac{\# \text{ of outcomes in } E \text{ consistent with } F}{\# \text{ of outcomes in } S \text{ consistent with } F} = \frac{|EF|}{|SF|} = \boxed{\frac{|EF|}{|F|}}$$
$$P(E \mid F) = \frac{|EF|}{|F|} = \frac{|EF|/|S|}{|F|/|S|} = \boxed{\frac{P(EF)}{P(F)}}$$

Roll one fair die. What is the probability that the outcome is 5 given that it's odd?

- $E = \{5\}$ event that roll is 5
- $F = \{1, 3, 5\}$ event that roll is odd
- Way I (from counting):

P(E | F) = |EF| / |F| = |E| / |F| = 1/3

Way 2 (from probabilities):

P(E | F) = P(EF) / P(F) = P(E) / P(F) = (1/6) / (1/2) = 1/3

Way 3 (from restricted sample space):

All outcomes are equally likely. Knowing F occurred doesn't distort relative likelihoods of outcomes within F, so they remain equally likely. There are only 3 of them, one being E, so $P(E \mid F) = 1/3$

coin flipping

Suppose you flip two coins & all outcomes are equally likely. What is the probability that both flips land on heads if...

• The first flip lands on heads?

Let $B = {HH}$ and $F = {HH, HT}$

- $P(B|F) = P(BF)/P(F) = P({HH})/P({HH, HT})$ = (1/4)/(2/4) = 1/2
- At least one of the two flips lands on heads?

Let
$$A = \{HH, HT, TH\}$$

P(B|A) = |BA|/|A| = 1/3

ands on heads?

1773

• At least one of the two flips lands on tails? Let G = {TH, HT, TT} $P(B|G) = P(BG)/P(G) = P(\emptyset)/P(G) = 0/P(G) = 0$

24 emails are sent, 6 each to 4 users.10 of the 24 emails are spam.All possible outcomes equally likely.

E = user #I receives 3 spam emails

What is **P(E)** ?

$$\mathsf{P}(\mathsf{E}) = \frac{|\mathsf{E}|}{|\mathsf{S}|} = \frac{\binom{10}{3}\binom{14}{3}\binom{14}{6}\binom{18}{6}\binom{12}{6}\binom{6}{6}}{\binom{12}{6}\binom{6}{6}} \approx 0.3245$$

24 emails are sent, 6 each to 4 users.10 of the 24 emails are spam.All possible outcomes equally likely

- E = user #I receives 3 spam emails
- F = user #2 receives 6 spam emails

What is **P(E|F)** ?

$$\mathsf{P}(\mathsf{E} \mid \mathsf{F}) = \frac{|\mathsf{E}\mathsf{F}|}{|\mathsf{F}|} = \frac{\binom{10}{6}\binom{4}{3}\binom{14}{3}\binom{12}{6}\binom{6}{6}}{\binom{10}{6}\binom{18}{6}\binom{12}{6}\binom{6}{6}} \approx 0.0784$$

24 emails are sent, 6 each to 4 users.10 of the 24 emails are spam.All possible outcomes equally likely

E = user #1 receives 3 spam emailsF = user #2 receives 6 spam emailsG = user #3 receives 5 spam emails

What is P(G|F)?

$$\mathsf{P}(\mathsf{G} \mid \mathsf{F}) = \frac{|\mathsf{G}\mathsf{F}|}{|\mathsf{F}|} = \frac{\binom{10}{6}\binom{4}{5}\binom{14}{1}\binom{12}{6}\binom{6}{6}}{\binom{10}{6}\binom{13}{6}\binom{12}{6}\binom{6}{6}} = 0$$

= 0

conditional probability

General defn:
$$P(E | F) = \frac{P(EF)}{P(F)}$$
 where P(F) > 0

Holds even when outcomes are <u>not</u> equally likely.

Example: $S = \{\# \text{ of heads in } 2 \text{ coin flips}\} = \{0, 1, 2\}$ NOT equally likely outcomes: P(0)=P(2)=1/4, P(1)=1/2

Q. What is prob of 2 heads (E) given at least 1 head (F)? A. P(EF)/P(F) = P(E)/P(F) = (1/4)/(1/4+1/2) = 1/3

Same as earlier formulation of this example (of course!)

$\begin{array}{c} \text{conditional probability: the chain rule} \\ \hline \text{General defn:} \ P(E \mid F) = \frac{P(EF)}{P(F)} \quad \text{where P(F) > 0} \end{array}$

Holds even when outcomes are *not* equally likely.

What if P(F) = 0?

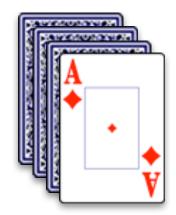
P(E|F) undefined: (you can't observe the impossible)

Implies (when (PF)>0): P(EF) = P(E|F) P(F) ("the chain rule")

General definition of Chain Rule:

 $P(E_1 E_2 \cdots E_n) = P(E_1) P(E_2 \mid E_1) P(E_3 \mid E_1, E_2) \cdots P(E_n \mid E_1, E_2, \dots, E_{n-1})$

piling cards



Deck of 52 cards randomly divided into 4 piles

- 13 cards per pile
- Compute P(each pile contains an ace)

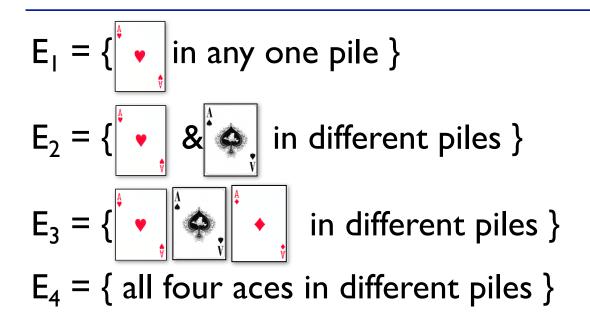
Solution:

$$E_{I} = \{ \bullet, \text{ in any one pile } \}$$

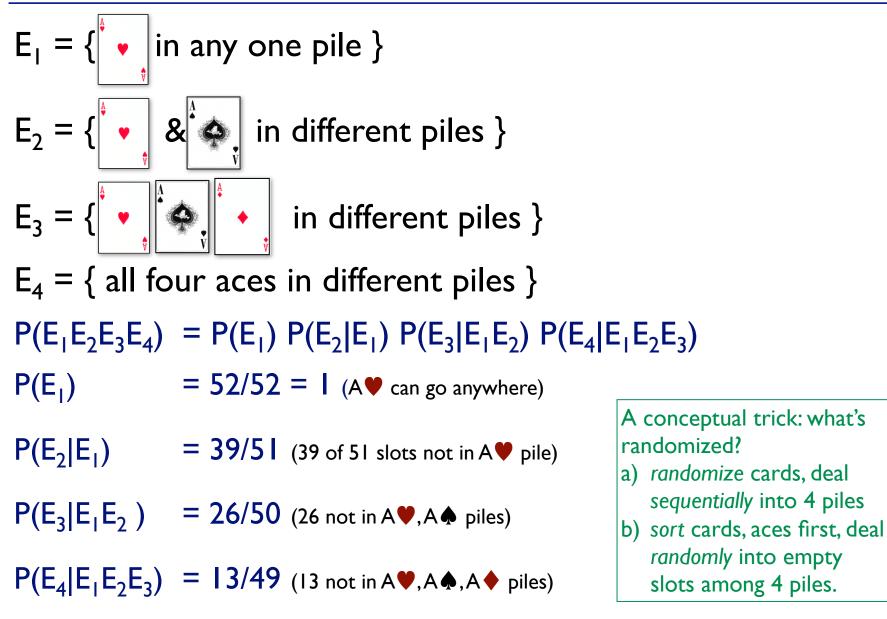
$$E_2 = \{ \bullet, \& \bullet, in different piles \}$$

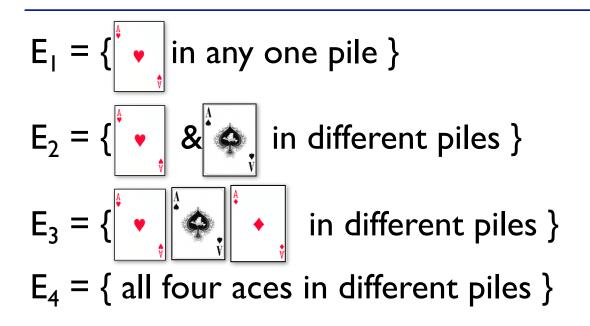
 $E_4 = \{ all four aces in different piles \}$

Compute $P(E_1 E_2 E_3 E_4)$



 $P(E_1E_2E_3E_4) = P(E_1) P(E_2|E_1) P(E_3|E_1E_2) P(E_4|E_1E_2E_3)$





 $\mathsf{P}(\mathsf{E}_1\mathsf{E}_2\mathsf{E}_3\mathsf{E}_4)$

- = $P(E_1) P(E_2|E_1) P(E_3|E_1E_2) P(E_4|E_1E_2E_3)$
- $= (52/52) \cdot (39/51) \cdot (26/50) \cdot (13/49)$

 ≈ 0.105

BT p. 19

"P(- | F)" is a probability law, i.e., satisfies the 3 axioms

Proof:

the idea is simple-the sample space contracts to F; dividing all (unconditional) probabilities by P(F) correspondingly renormalizes the probability measure – see text for details; better yet, try it!

```
Ex: P(A \cup B) \leq P(A) + P(B)
\therefore P(A \cup B|F) \leq P(A|F) + P(B|F)
```

 $Ex: P(A) = I - P(A^{C})$ $\therefore P(A|F) = I - P(A^{C}|F)$

etc.

sending bit strings

Bit string with m I's and n 0's sent on the network

All distinct arrangements of bits equally likely

$$E = first bit received is a 0$$

F = k of first r bits received are 0's

What's P(E|F)?

```
Solution I ("restricted sample space"):
```

Observe:

P(E|F) = P(picking one of k 0's out of r bits)

So:

P(E|F) = k/r

Bit string with m I's and n 0's sent on the network

All distinct arrangements of bits equally likely

$$E = first bit received is a 0$$

F = k of first r bits received are 0's

What's P(E|F)?

Solution 2 (counting):

 $\mathsf{EF} = \{ (\mathsf{n+m}) \text{-bit strings} \mid \mathsf{I}^{\mathsf{st}} \mathsf{ bit} = \mathsf{0} \& (\mathsf{k-I})\mathsf{0}^{\mathsf{s}} \mathsf{ in the next} (\mathsf{r-I}) \}$ $|EF| = \binom{r-1}{k-1} \binom{n+m-r}{n-k}$

$$|F| = \binom{r}{k} \binom{n+m-r}{n-k}$$

$$P(E|F) = \frac{|EF|}{|F|} = \frac{\binom{r-1}{k-1}\binom{n+m-r}{n-k}}{\binom{r}{k}\binom{n+m-r}{n-k}} = \frac{\binom{r-1}{k-1}\binom{n+m-r}{n-k}}{\frac{r}{k}\binom{r-1}{k-1}\binom{n+m-r}{n-k}} = \frac{k}{r}$$
19

One of the many binomial identities

Bit string with m I's and n 0's sent on the network

All distinct arrangements of bits equally likely

$$E = first bit received is a 0$$

F = k of first r bits received are 0's

What's P(E|F)?

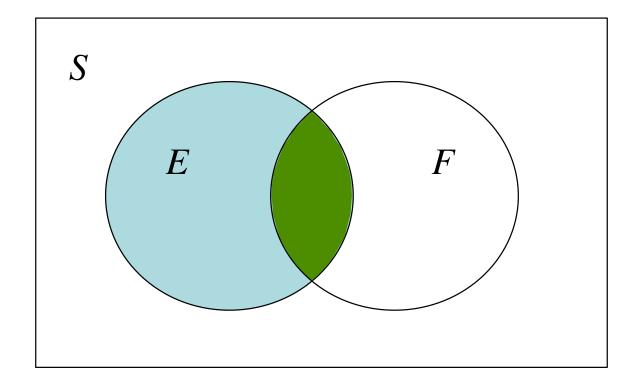
Solution 3 (more fun with conditioning):

$$P(E) = \frac{n}{m+n} \qquad P(F \mid E) = \frac{\binom{n-1}{k-1}\binom{m}{r-k}}{\binom{m+n-1}{r-1}}$$

$$P(F) = \frac{\binom{n}{k}\binom{m}{r-k}}{\binom{m+n}{r}} \xrightarrow{\text{A generally useful trick:}}_{\text{Reversing conditioning}}$$

$$P(E \mid F) = \frac{P(EF)}{P(F)} = \frac{P(F \mid E)P(E)}{P(F)} = \dots = \frac{k}{r}$$
20

law of total probability E and F are events in the sample space S $\mathbf{E} = \mathbf{EF} \cup \mathbf{EF^{c}}$



 $EF \cap EF^c = \emptyset$ \Rightarrow P(E) = P(EF) + P(EF^c) BT p. 28

law of total probability

BT p. 28

$$P(E) = P(EF) + P(EF^{c})$$

= P(E|F) P(F) + P(E|F^{c}) P(F^{c})
= P(E|F) P(F) + P(E|F^{c}) (I-P(F))

weighted average, conditioned on event F happening or not.

More generally, if F_1 , F_2 , ..., F_n partition S (mutually

exclusive, $U_i F_i = S, P(F_i) > 0$), then

 $P(E) = \sum_{i} P(E|F_i) P(F_i)$

weighted average, conditioned on events F_i happening or not.

(Analogous to reasoning by cases; both are very handy.)

Sally has I elective left to take: either Phys or Chem. She will get A with probability 3/4 in Phys, with prob 3/5 in Chem. She flips a coin to decide which to take.

What is the probability that she gets an A?

$$P(A) = P(A|Phys)P(Phys) + P(A|Chem)P(Chem)$$

= (3/4)(1/2)+(3/5)(1/2)
= 27/40

Note that conditional probability was a means to an end in this example, not the goal itself. One reason conditional probability is important is that this is a common scenario.

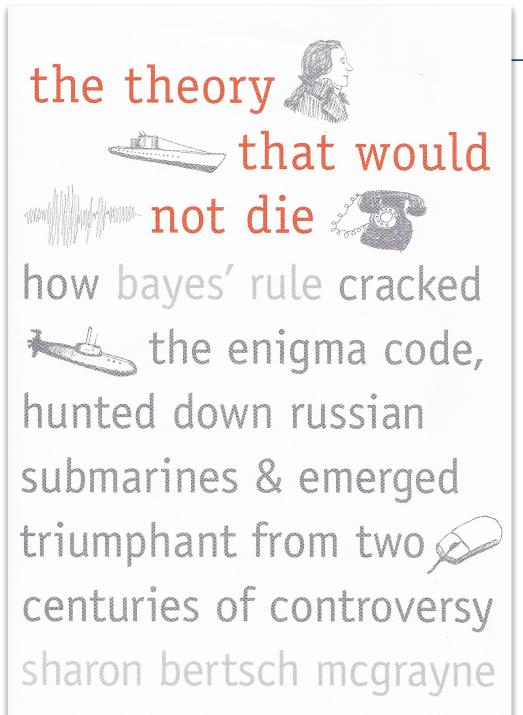
gamblers ruin

2 Gamblers: Alice & Bob. A has i dollars; B has (N-i) Ν Flip a coin. Heads -A wins I;Tails - B wins Iaka "Drunkard's Walk" Repeat until A or B has all N dollars What is P(A wins)? nice example of the utility of conditioning: future decomposed Let E_i = event that A wins starting with \$i into two crisp cases instead of being a blurred superposition Approach: Condition on I^{st} flip; H = headsthereof $= P(E_i) = P(E_i | H)P(H) + P(E_i | T)P(T)$ p_i $p_i = \frac{1}{2}(p_{i+1} + p_{i-1})$ $2p_1$ So: $p_{i+1} + p_{i-1}$ $2p_i$ p_i $\imath p_1$ $p_{i+1} - p_i$ $= p_i - p_{i-1}$ $= Np_1 = 1$ $p_2 - p_1 = p_1 - p_0 = p_1$, since $p_0 = 0$ p_N i/N_ p_i

Bayes Theorem

BT p. 1.4

6 balls in an urn, some red, some white Probability of drawing 3 red balls, given 3 in W urn? Rev. Thomas Bayes c. 1701-1761 Probability of 3 red balls in urn, w = ?? r = ?? given that I drew three?



Yale University Press, 2011

ISBN-13: 978-0300188226

http://www.amazon.com/Theory-That-Would-Not-Die/dp/0300188226/

Bayes Theorem

"Improbable Inspiration: The future of software may lie in the obscure theories of an 18th century cleric named Thomas Bayes"

Los Angeles Times (October 28, 1996) By Leslie Helm, Times Staff Writer

"When Microsoft Senior Vice President

Steve Ballmer [now CEO] first heard his company was

planning a huge investment in an Internet service offering... he went to Chairman Bill Gates with his concerns...

Gates began discussing the critical role of "Bayesian" systems..."

source: http://www.ar-tiste.com/latimes_oct-96.html

Most common form:

$$P(F \mid E) = \frac{P(E \mid F)P(F)}{P(E)}$$

Expanded form (using law of total probability):

$$P(F \mid E) = \frac{P(E \mid F)P(F)}{P(E \mid F)P(F) + P(E \mid F^c)P(F^c)}$$

Proof: $P(F \mid E) = \frac{P(EF)}{P(E)} = \frac{P(E \mid F)P(F)}{P(E)}$ Most common form:

$$P(F \mid E) = \frac{P(E \mid F)P(F)}{P(E)}$$

Expanded form (using law of total probability):

$$P(F \mid E) = \frac{P(E \mid F)P(F)}{P(E \mid F)P(F) + P(E \mid F^c)P(F^c)}$$

Why it's important: Reverse conditioning P(model | data) ~ P(data | model) Combine new evidence (E) with prior belief (P(F)) Posterior vs prior An urn contains 6 balls, either 3 red + 3 white or all 6 red. You draw 3; all are red. Did urn have only 3 red?

Can't tell!

Suppose it was 3 + 3 with probability p=3/4. Did urn have only 3 red?

$$M = \text{urn has 3 red + 3 white} \\ D = I \text{ drew 3 red} \\ P(D \mid M) = {\binom{3}{3}} / {\binom{6}{3}} = \frac{1}{20} \\ P(M \mid D) = \frac{P(D \mid M)P(M)}{P(D \mid M)P(M) + P(D \mid M^c)P(M^c)} \\ = \frac{(\frac{1}{20})(\frac{3}{4})}{(\frac{1}{20})(\frac{3}{4}) + (1)(1 - \frac{3}{4})} = \frac{3}{23} \qquad \begin{array}{c} \text{prior = 3/4;} \\ \text{posterior = 3/23} \end{array}$$

simple spam detection

Say that 60% of email is spam 90% of spam has a forged header 20% of non-spam has a forged header Let F = message contains a forged header Let J = message is spam What is P(J|F) ?

Solution:

$$P(J | F) = \frac{P(F | J)P(J)}{P(F | J)P(J) + P(F | J^{c})P(J^{c})}$$
$$= \frac{(0.9)(0.6)}{(0.9)(0.6) + (0.2)(0.4)}$$
$$\approx 0.871$$

simple spam detection

Say that 60% of email is spam 10% of spam has the word "Viagra" 1% of non-spam has the word "Viagra" Let V = message contains the word "Viagra" Let J = message is spam What is P(J|V) ?

Solution:

$$P(J \mid V) = \frac{P(V \mid J)P(J)}{P(V \mid J)P(J) + P(V \mid J^c)P(J^c)}$$
$$= \frac{(0.1)(0.6)}{(0.1)(0.6) + (0.01)(1 - 0.6)}$$
$$\approx 0.9375$$

DNA paternity testing

Child is born with (A,a) gene pair (event $B_{A,a}$) Mother has (A,A) gene pair Two possible fathers: $M_1 = (a,a), M_2 = (a,A)$ $P(M_1) = p, P(M_2) = 1-p$ What is $P(M_1 | B_{A,a})$?

Solution:

 $P(M_1 \mid B_{Aa})$

Exercises: What if M₂ were (A,A)? What if child were (A,A)?

$$= \frac{P(B_{Aa} \mid M_1)P(M_1)}{P(B_{Aa} \mid M_1)P(M_1) + P(B_{Aa} \mid M_2)P(M_2)}$$

$$= \frac{1 \cdot p}{1 \cdot p + 0.5(1-p)} = \frac{2p}{1+p} > \frac{2p}{1+1} = p \qquad \overset{\text{E.g.,}}{\text{I/2} \to \text{2/3}}$$

I.e., the given data about child raises probability that M_1 is father

Suppose an HIV test is 98% effective in detecting HIV, i.e., its "false negative" rate = 2%. Suppose furthermore, the test's "false positive" rate = 1%. 0.5% of population has HIV Let E = you test positive for HIV Let F = you actually have HIV What is P(F|E) ? Solution:

$$P(F \mid E) = \frac{P(E \mid F)P(F)}{P(E \mid F)P(F) + P(E \mid F^{c})P(F^{c})}$$
$$= \frac{(0.98)(0.005)}{(0.98)(0.005) + (0.01)(1 - 0.005)}$$
$$\approx 0.330$$
 P(E) \approx 1.5%

Note difference between conditional and joint probability: P(F|E) = 33%; P(FE) = 0.49%

why testing is still good

	HIV+	HIV-	
Test +	0.98 = P(E F)	$0.01 = P(E F^{c})$	
Test -	$0.02 = P(E^{c} F)$	$0.99 = P(E^{c} F^{c})$	

Let E^c = you test **negative** for HIV Let F = you actually have HIV What is P(F|E^c) ? $P(F | E^c) = \frac{P(E^c | F)P(F)}{P(E^c | F)P(F) + P(E^c | F^c)P(F^c)}$ (0.02)(0.005)

 $\frac{(0.02)(0.005)}{(0.02)(0.005) + (0.99)(1 - 0.005)}$

 ≈ 0.0001

The probabiliy of event E is P(E). The odds of event E is $P(E)/(P(E^c))$

Example: A = any of 2 coin flips is H: P(A) = 3/4, $P(A^c) = 1/4$, so odds of A is 3 (or "3 to 1 in favor")

Example: odds of having HIV:

P(F) = .5% so $P(F)/P(F^{c}) = .005/.995$ (or I to 199 *against;* this is close, but not equal to, P(F)=1/200)

- F = some event of interest (say, "HIV+")
- E = additional evidence (say, "HIV test was positive")

Prior odds of F: P(F)/P(F^c)

What are the Posterior odds of F: $P(F|E)/P(F^{c}|E)$?

 $P(F \mid E) = \frac{P(E \mid F)P(F)}{P(E)}$ $P(F^{c} \mid E) = \frac{P(E \mid F^{c})P(F^{c})}{P(E)}$ $\frac{P(F \mid E)}{P(F^{c} \mid E)} = \frac{P(E \mid F)}{P(E \mid F^{c})} \cdot \frac{P(F)}{P(F^{c})}$ $\begin{pmatrix} \text{posterior} \\ \text{odds} \end{pmatrix} = \begin{pmatrix} \text{"Bayes} \\ \text{factor"} \end{pmatrix} \cdot \begin{pmatrix} \text{prior} \\ \text{odds} \end{pmatrix}$

In a way, nothing new here, versus prior results, but the simple form, and the simple interpretation are convenient.

posterior odds from prior odds

_et E = you test <i>positiv</i> e for HIV	
_et F = you actually <i>hav</i> e HIV	
What are the posterior odds?	

	HIV+	HIV-	
Test +	0.98 = P(E F)	$0.01 = P(E F^c)$	
Test -	$0.02 = P(E^{c} F)$	$0.99 = P(E^{c} F^{c})$	

$$\frac{P(F \mid E)}{P(F^c \mid E)} = \frac{P(E \mid F)}{P(E \mid F^c)} \frac{P(F)}{P(F^c)}$$
(posterior odds = "Bayes factor" · prior odds)
$$= \frac{0.98}{0.01} \cdot \frac{0.005}{0.995}$$

More likely to test positive if you are positive, so Bayes factor >1; positive test increases odds, 98-fold in this case, to 2.03:1 against (vs prior of 199:1 against)

posterior odds from prior odds

Let E = you test <i>negative</i> for HIV		HIV+	HIV-
	lest +		$0.01 = P(E F^c)$
Let F = you actually <i>have</i> HIV	Test -	$0.02 = P(E^{c} F)$	$0.99 = P(E^{c} F^{c})$

What is the *ratio* between P(F|E) and $P(F^{c}|E)$?

$$\frac{P(F \mid E)}{P(F^c \mid E)} = \frac{P(E \mid F)}{P(E \mid F^c)} \frac{P(F)}{P(F^c)}$$
(posterior odds = "Bayes factor" · prior odds)
$$= \frac{0.02}{0.99} \cdot \frac{0.005}{0.995}$$

Unlikely to test negative if you are positive, so Bayes factor <1; negative test decreases odds 49.5-fold, to 9850:1 against (vs prior of 199:1 against)

simple spam detection

Say that 60% of email is spam 10% of spam has the word "Viagra" 1% of non-spam has the word "Viagra" Let V = message contains the word "Viagra" Let J = message is spam What are posterior odds that a message containing "Viagra" is spam ? Solution:

$$\frac{P(J \mid V)}{P(J^c \mid V)} = \frac{P(V \mid J)}{P(V \mid J^c)} \frac{P(J)}{P(J^c)}$$
(posterior odds = "Bayes factor" · prior odds)

$$15 = \frac{0.10}{0.01} \cdot \frac{0.6}{0.4}$$

Conditional probability

P(E|F): Conditional probability that E occurs given that F has occurred. Reduce event/sample space to points consistent w/ F (E \cap F; S \cap F)

$$P(E \mid F) = \frac{P(EF)}{P(F)} \qquad (P(F) > 0)$$
$$P(E \mid F) = \frac{|EF|}{|F|} \text{, if equiprobable outcomes.}$$

P(EF) = P(E|F) P(F) ("the chain rule")

"P(- | F)" is a probability law, i.e., satisfies the 3 axioms

 $P(E) = P(E|F) P(F) + P(E|F^{c}) (I-P(F))$ ("the law of total probability")

Bayes theorem

$$P(F \mid E) = \frac{P(E \mid F)P(F)}{P(E)}$$
 prior, posterior, odds, prior odds, posterior odds, Bayes factor