
8. Average-Case Analysis of  Algorithms 
 + Randomized Algorithms

CSE 312,  Autumn 2013,  W.L.Ruzzo
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insertion sort

Array A[1] … A[n]	


for i = 2 … n-1 {	


   T = A[i]	


   j = i-1	


   while j >= 0 && T < A[j] {	


      A[j+1] = A[j]	


      A[j] = T	


      j = j-1	


   }	


   A[j+1] = T	


or

“compare”

“swap”
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insertion sort

Run Time	


Worst Case: O(n2)  	


  ( ~n2 swaps;  #compares = #swaps + n - 1)	


“Average Case”	


  ?  What’s an “average” input?	


  One idea (and about the only one that is 
  analytically tractable): assume all n! permutations  
  of input are equally likely.
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permutations & inversions

A permutation π = (π1, π2, ..., πn) of 1, ..., n is simply a list 
of the numbers between 1 and n, in some order.	


(i,j) is an inversion in π  if i < j but πi > πj	


E.g.,  	


!

                        π = ( 3 5 1 4 2 )	


!

has six inversions: (1,3), (1,5), (2,3), (2,4), (2,5), and (4,5)	


Min possible:  0:                        π = ( 1 2 3 4 5 )	


Max possible:  n choose 2:         π = ( 5 4 3 2 1 )	


Obviously, the goal of sorting is to remove inversions 

G. Cramer, 1750
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(1,5)

(4,5)



inversions & insertion sort

Swapping an adjacent pair of positions that are out-of-
order decreases the number of inversions by exactly 1.	

So..., number of swaps performed by insertion sort is 
exactly the number of inversions present in the input.  
Counting them:	


a. worst case: n choose 2	

b. average case:
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There is a 1-1 correspondence between permutations 
having inversion (i,j) versus not:	


!

!

So:	


!

!

!

Thus, the expected number of swaps in insertion sort  
is            versus        in worst-case.  I.e., 	


counting inversions

The average run time of insertion sort (assuming 
random input) is about half the worst case time.

���6



average-case analysis of  quicksort

Quicksort also does swaps, but nonadjacent ones.	


Recall method:	


Array A[1..n]	


1.  “pivot” = A[1]	


2.  “Partition” ( O(n) compares/swaps ) so that: 	


   {A[1], ..., A[i-1]} < {A[i] == pivot} < {A[i+1], ..., A[n]}	


3.  recursively sort {A[1], ..., A[i-1]} & {A[i+1], ..., A[n]}
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quicksort run-time

Worst case: already sorted (among others) – 	


     T(n) = n + T(n-1) ⇒  
            = n + (n-1) + (n-2) + ...  + 1 = n(n+1)/2	


Best case: pivot is always median	


    T(n) = 2 T(n/2) +n	


	
       ⇒ ~n log2 n	


Average case:  ?  	


Below.  Will turn out to be ~40% slower than best  
Why?   
    Random pivots are “near the middle on average”
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average-case analysis

Assume input is a random permutation of 1, ..., n, i.e., 
that all n! permutations are equally likely	


!

Then 1st pivot  A[1] is uniformly random in 1, ..., n	


!

Important subtlety:   	


  pivots at all recursive levels will be random, too,  
  (unless you do something funky in the partition phase)
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Let CN be the average number of comparisons made by 
quicksort when called on an array of size N.  Then:	


C0 = C1 = 0  (a list of length ≤ 1 is already sorted)	


In the general case, there are N-1 comparisons: the 
pivot vs every other element (a detail: plus 2 more for 
handling the “pointers cross” test to end the loop).  The  
pivot ends up in some position 1 ≤ k ≤ N, leaving  
two subproblems of size k-1 and N-k.  By Law of Total 
Expectation:

1/N because all values 1 ≤ k ≤ N 
for pivot are equally likely.

(Analysis from Sedgewick, Algorithms in C, 3rd ed., 1998, p311-312; Knuth TAOCP v3, 1st ed 1973, p120.)
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Multiply by N; 
subtract same 

for N-1

Rearrange
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Rearrange; every 
Ci  is there twice
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div by N(N+1)

substitute



Notes

So, average run time, averaging over randomly ordered 
inputs, = Θ(n log n).	


!

A worst case input is still worst case: n2 every time	


!

(Is real data random?)	


!

Is it possible to improve the worst case?
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another idea: randomize the algorithm

Algorithm as before, except pivot is a randomly selected 
element of A[1]...A[n] (at top level; A[i]..A[j] for subproblem i..j)	


Analysis is the same, but conclusion is different:	


  On any fixed input, average run time is n log n,  
  averaged over repeated (random) runs of the algorithm.	


!

There are no longer any “bad inputs”, just “bad 
(random) choices.”  Fortunately, such choices are 
improbable!
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