
8. Average-Case Analysis of Algorithms
 + Randomized Algorithms

CSE 312, Autumn 2013, W.L.Ruzzo

���1

insertion sort

Array A[1] … A[n]	

for i = 2 … n-1 {	

 T = A[i]	

 j = i-1	

 while j >= 0 && T < A[j] {	

 A[j+1] = A[j]	

 A[j] = T	

 j = j-1	

 }	

 A[j+1] = T	

or

“compare”

“swap”

So
rt

ed
U

ns
or

te
d i

���2

j

insertion sort

Run Time	

Worst Case: O(n2) 	

 (~n2 swaps; #compares = #swaps + n - 1)	

“Average Case”	

 ? What’s an “average” input?	

 One idea (and about the only one that is 
 analytically tractable): assume all n! permutations  
 of input are equally likely.

���3

permutations & inversions

A permutation π = (π1, π2, ..., πn) of 1, ..., n is simply a list
of the numbers between 1 and n, in some order.	

(i,j) is an inversion in π if i < j but πi > πj	

E.g., 	

!

 π = (3 5 1 4 2)	

!

has six inversions: (1,3), (1,5), (2,3), (2,4), (2,5), and (4,5)	

Min possible: 0: π = (1 2 3 4 5)	

Max possible: n choose 2: π = (5 4 3 2 1)	

Obviously, the goal of sorting is to remove inversions

G. Cramer, 1750

���4

(1,5)

(4,5)

inversions & insertion sort

Swapping an adjacent pair of positions that are out-of-
order decreases the number of inversions by exactly 1.	

So..., number of swaps performed by insertion sort is
exactly the number of inversions present in the input.
Counting them:	

a. worst case: n choose 2	

b. average case:

���5

“T
he

 m
eth

od
 o

f

ind
ica

to
rs”

There is a 1-1 correspondence between permutations
having inversion (i,j) versus not:	

!

!

So:	

!

!

!

Thus, the expected number of swaps in insertion sort  
is versus in worst-case. I.e., 	

counting inversions

The average run time of insertion sort (assuming
random input) is about half the worst case time.

���6

average-case analysis of quicksort

Quicksort also does swaps, but nonadjacent ones.	

Recall method:	

Array A[1..n]	

1. “pivot” = A[1]	

2. “Partition” (O(n) compares/swaps) so that: 	

 {A[1], ..., A[i-1]} < {A[i] == pivot} < {A[i+1], ..., A[n]}	

3. recursively sort {A[1], ..., A[i-1]} & {A[i+1], ..., A[n]}

���7

quicksort run-time

Worst case: already sorted (among others) – 	

 T(n) = n + T(n-1) ⇒  
 = n + (n-1) + (n-2) + ... + 1 = n(n+1)/2	

Best case: pivot is always median	

 T(n) = 2 T(n/2) +n	

	
 ⇒ ~n log2 n	

Average case: ? 	

Below. Will turn out to be ~40% slower than best  
Why?  
 Random pivots are “near the middle on average”

���8

average-case analysis

Assume input is a random permutation of 1, ..., n, i.e.,
that all n! permutations are equally likely	

!

Then 1st pivot A[1] is uniformly random in 1, ..., n	

!

Important subtlety: 	

 pivots at all recursive levels will be random, too,  
 (unless you do something funky in the partition phase)

���9

Let CN be the average number of comparisons made by
quicksort when called on an array of size N. Then:	

C0 = C1 = 0 (a list of length ≤ 1 is already sorted)	

In the general case, there are N-1 comparisons: the
pivot vs every other element (a detail: plus 2 more for
handling the “pointers cross” test to end the loop). The  
pivot ends up in some position 1 ≤ k ≤ N, leaving  
two subproblems of size k-1 and N-k. By Law of Total
Expectation:

1/N because all values 1 ≤ k ≤ N
for pivot are equally likely.

(Analysis from Sedgewick, Algorithms in C, 3rd ed., 1998, p311-312; Knuth TAOCP v3, 1st ed 1973, p120.)

���10

number of comparisons

Multiply by N;
subtract same

for N-1

Rearrange

���11

Rearrange; every
Ci is there twice

���12

div by N(N+1)

substitute

Notes

So, average run time, averaging over randomly ordered
inputs, = Θ(n log n).	

!

A worst case input is still worst case: n2 every time	

!

(Is real data random?)	

!

Is it possible to improve the worst case?

���13

another idea: randomize the algorithm

Algorithm as before, except pivot is a randomly selected
element of A[1]...A[n] (at top level; A[i]..A[j] for subproblem i..j)	

Analysis is the same, but conclusion is different:	

 On any fixed input, average run time is n log n,  
 averaged over repeated (random) runs of the algorithm.	

!

There are no longer any “bad inputs”, just “bad
(random) choices.” Fortunately, such choices are
improbable!

���14

