8. Average-Case Analysis of Algorithms + Randomized Algorithms

Array $\mathrm{A}[\mathrm{I}] \ldots \mathrm{A}[\mathrm{n}]$
for $\mathrm{i}=2 \ldots \mathrm{n}$ - $\{$
$\mathrm{T}=\mathrm{A}[\mathrm{i}]$
$j=i-I$
while $j>=0 \& \& T<A[i]\}$
"swap" $\left\{\begin{array}{l}A[j+I]=A[j]\end{array}\right.$
$A[j]=T$
$j=j-1$
\}
$\mathrm{A}[\mathrm{j}+\mathrm{I}]=\mathrm{T}$

Run Time

Worst Case: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
($\sim n^{2}$ swaps; \#compares = \#swaps + n-I)
"Average Case"
? What's an "average" input?
One idea (and about the only one that is analytically tractable): assume all n ! permutations of input are equally likely.

permutations \& inversions

A permutation $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ of I, \ldots, n is simply a list of the numbers between I and n, in some order.
(i, j) is an inversion in π if $\mathrm{i}<j$ but $\pi_{i}>\pi_{j}$
G. Cramer, I750
E.g.,

has six inversions: $(1,3),(1,5),(2,3),(2,4),(2,5)$, and $(4,5)$
Min possible: 0:

$$
\pi=(12345)
$$

Max possible: n choose 2: $\quad \pi=\left(\begin{array}{ll}5 & 421\end{array}\right)$
Obviously, the goal of sorting is to remove inversions

Swapping an adjacent pair of positions that are out-oforder decreases the number of inversions by exactly I. So..., number of swaps performed by insertion sort is exactly the number of inversions present in the input. Counting them:
a. worst case: n choose 2
b. average case:

$$
\begin{aligned}
I_{i, j} & = \begin{cases}1 & \text { if }(i, j) \text { is an inversion } \\
0 & \text { if not }\end{cases} \\
I & =\sum_{i<j} I_{i, j} \\
E[I] & =E\left[\sum_{i<j} I_{i, j}\right]=\sum_{i<j} E\left[I_{i, j}\right]
\end{aligned}
$$

There is a $\mathrm{I}-\mathrm{I}$ correspondence between permutations having inversion (i,j) versus not:

$$
\left.\begin{array}{llllll}
\pi & (\cdots & a & \cdots & b & \cdots
\end{array}\right)
$$

So:

$$
\begin{gathered}
E\left[I_{i, j}\right]=P\left(I_{i, j}=1\right)=1 / 2 \\
E[I]=\sum_{i<j} E\left[I_{i, j}\right]=\sum_{i<j} \frac{1}{2}=\binom{n}{2} \cdot \frac{1}{2}
\end{gathered}
$$

Thus, the expected number of swaps in insertion sort is $\binom{n}{2} / 2$ versus $\binom{n}{2}$ in worst-case. I.e.,

The average run time of insertion sort (assuming random input) is about half the worst case time.

Quicksort also does swaps, but nonadjacent ones.
Recall method:
Array A[I..n]
I. "pivot" = A[I]
2. "Partition" ($O(n)$ compares/swaps) so that:
$\{\mathrm{A}[\mathrm{I}], \ldots, \mathrm{A}[\mathrm{i}-\mathrm{I}]\}<\{\mathrm{A}[\mathrm{i}]==\operatorname{pivot}\}<\{\mathrm{A}[\mathrm{i}+\mathrm{I}], \ldots, \mathrm{A}[\mathrm{n}]\}$
3. recursively sort $\{\mathrm{A}[\mathrm{I}], \ldots, \mathrm{A}[\mathrm{i}-\mathrm{I}]\} \&\{\mathrm{~A}[\mathrm{i}+\mathrm{I}], \ldots, \mathrm{A}[\mathrm{n}]\}$

Worst case: already sorted (among others) -

$$
\begin{aligned}
T(n) & =n+T(n-I) \Rightarrow \\
& =n+(n-I)+(n-2)+\ldots+I=n(n+I) / 2
\end{aligned}
$$

Best case: pivot is always median

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n} \\
& \Rightarrow \sim \mathrm{n} \log _{2} \mathrm{n}
\end{aligned}
$$

Average case: ?
Below. Will turn out to be $\sim 40 \%$ slower than best Why?

Random pivots are "near the middle on average"

Assume input is a random permutation of $\mathrm{I}, \ldots, \mathrm{n}$, i.e., that all n ! permutations are equally likely

Then $I^{\text {st }}$ pivot $A[I]$ is uniformly random in I, \ldots, n

Important subtlety:
pivots at all recursive levels will be random, too, (unless you do something funky in the partition phase)

Let C_{N} be the average number of comparisons made by quicksort when called on an array of size N. Then:

$$
C_{0}=C_{1}=0 \text { (a list of length } \leq 1 \text { is already sorted) }
$$

In the general case, there are N - I comparisons: the pivot vs every other element (a detail: plus 2 more for handling the "pointers cross" test to end the loop). The pivot ends up in some position I $\leq k \leq N$, leaving two subproblems of size k-I and N-k. By Law of Total Expectation:

(Analysis from Sedgewick, Algorithms in C, 3rd ed., I998, p3II-3I2; Knuth TAOCP v3, Ist ${ }^{\text {st }}$ ed 973, pl20.)

$$
\begin{gathered}
C_{N}=N+1+\frac{1}{N} \sum_{1 \leq k \leq N}\left(C_{k-1}+C_{N-k}\right) \quad \text { for } N \geq 2, \\
C_{N}=N+1+\frac{2}{N} \sum_{1 \leq k \leq N} C_{k-1} \sum_{\substack{\text { Rearrange; every } \\
C_{i} \text { is there twice }}}^{\substack{\text { Multiply by } N ; \\
\text { subtract same } \\
\text { for } N-1}}\left(\begin{array}{c}
\text { Rearrange }
\end{array}\right. \\
N C_{N}-(N-1) C_{N-1}=N(N+1)-(N-1) N+2 C_{N-1} . \\
N C_{N}=(N+1) C_{N-1}+2 N .
\end{gathered}
$$

$$
\begin{aligned}
& N C_{N}=(N+1) C_{N-1}+2 N . \\
& \frac{C_{N}}{N+1}=\frac{C_{N-1}}{N}+\frac{2}{N+1} \\
&=\frac{C_{N-2}}{N-1}+\frac{2}{N}+\frac{2}{N+1} \\
&=\vdots \\
&=\frac{C_{2}}{3}+\sum_{3 \leq k \leq N} \frac{2}{k+1} . \\
& \frac{C_{N}}{N+1} \approx 2 \sum_{1 \leq k<N} \frac{1}{k} \approx 2 \int_{1}^{N} \frac{1}{x} d x=2 \ln N, \\
& 2 N \ln N \approx 1.39 N \lg N
\end{aligned}
$$

So, average run time, averaging over randomly ordered inputs, $=\Theta(\mathrm{n} \log \mathrm{n})$.

A worst case input is still worst case: n^{2} every time
(ls real data random?)

Is it possible to improve the worst case?

Algorithm as before, except pivot is a randomly selected element of $A[I] \ldots$...A $[\mathrm{n}]$ (at top level;: $\mathrm{A}[\mathrm{i} . \mathrm{A}$ A[i] for subproblem i.i.)
Analysis is the same, but conclusion is different:
On any fixed input, average run time is $n \log n$, averaged over repeated (random) runs of the algorithm.

There are no longer any "bad inputs", just "bad (random) choices." Fortunately, such choices are improbable!

