tail bounds

For a random variable X, the *tails* of X are the parts of the PMF that are "far" from its mean.

binomial tails

PMF for X ~ Bin(100,0.5)

heavy-tailed distribution

heavy-tailed distribution

Х

7

Often, we want to bound the probability that a random variable X is "extreme." Perhaps:

$$P(X > \alpha) < \frac{1}{\alpha^3}$$
$$P(X > E[X] + t) < e^{-t}$$
$$P(|X - E[X]| > t) < \frac{1}{\sqrt{t}}$$

We know that randomized quicksort runs in O(n log n) expected time. But what's the probability that it takes more than 10 n log(n) steps? More than n^{1.5} steps?

If we know the expected advertising cost is \$1500/day, what's the probability we go over budget? By a factor of 4?

I only expect 10,000 homeowners to default on their mortgages. What's the probability that 1,000,000 homeowners default?

"Lake Wobegon, Minnesota, where all the women are strong, all the men are good looking, and all the children are above average..."

In general, an *arbitrary* random variable could have very bad behavior. But knowledge is power; if we know *something*, can we bound the badness?

Suppose we know that X is always non-negative.

Theorem: If X is a non-negative random variable, then for every $\alpha > 0$, we have

$$P(X \ge \alpha) \le \frac{E[X]}{\alpha}$$

Corr:

$$P(X \ge \alpha E[X]) \le 1/\alpha$$

Theorem: If X is a non-negative random variable, then for every $\alpha > 0$, we have

$$P(X \ge \alpha) \le \frac{E[X]}{\alpha}$$

Example: if X = daily advertising expenses and E[X] = 1500

Then, by Markov's inequality,

$$P(X \ge 6000) \le \frac{1500}{6000} = 0.25$$

Theorem: If X is a non-negative random variable, then for every $\alpha > 0$, we have

$$P(X \ge \alpha) \le \frac{E[X]}{\alpha}$$

Example: if X = time to quicksort *n* items, expectation $E[X] \approx 1.4 n \log n$. What's probability that it takes > 4 times as long as expected?

By Markov's inequality:

 $\mathsf{P}(\mathsf{X} \ge 4 \bullet \mathsf{E}[\mathsf{X}]) \le \mathsf{E}[\mathsf{X}]/(4 \mathsf{E}[\mathsf{X}]) = 1/4$

Theorem: If X is a non-negative random variable, then for every $\alpha > 0$, we have

$$P(X \ge \alpha) \le \frac{E[X]}{\alpha}$$

Proof: $E[X] = \sum_{x} xP(x)$ $= \sum_{x < \alpha} xP(x) + \sum_{x \ge \alpha} xP(x)$ $\ge 0 + \sum_{x \ge \alpha} \alpha P(x) \quad (x \ge 0; \alpha \le x)$ $= \alpha P(X \ge \alpha)$

Markov's inequality

Theorem: If X je variable, then for

Proof: E[X]

 $(x \ge 0; \alpha \le x)$

If we know *more* about a random variable, we can often use that to get *better* tail bounds.

Suppose we also know the variance.

Theorem: If Y is an arbitrary random variable with $E[Y] = \mu$, then, for any $\alpha > 0$,

$$P(|Y - \mu| \ge \alpha) \le \frac{\operatorname{Var}[Y]}{\alpha^2}$$

Theorem: If Y is an arbitrary random variable with $\mu = E[Y]$, then, for any $\alpha > 0$,

$$P(|Y - \mu| \ge \alpha) \le \frac{\operatorname{Var}[Y]}{\alpha^2}$$

Proof: Let $X = (Y - \mu)^2$

X is non-negative, so we can apply Markov's inequality:

$$P(|Y - \mu| \ge \alpha) = P(X \ge \alpha^2)$$
$$\leq \frac{E[X]}{\alpha^2} = \frac{\operatorname{Var}[Y]}{\alpha^2}_{\text{18}}$$

Theorem: variable with P(|Y|)Proof: Let X is non-neg inequality: P(|Y

$$P(|Y - \mu| \ge \alpha) \le \frac{\operatorname{Var}[Y]}{\alpha^2}$$

Y = money spent on advertising in a day E[Y] = 1500 Var[Y] = 500² (i.e. SD[Y] = 500) $P(Y \ge 6000) = P(|Y - \mu| \ge 4500)$ $\le \frac{500^2}{4500^2} = \frac{1}{81} \approx 0.012$

20

$$P(|Y - \mu| \ge \alpha) \le \frac{\operatorname{Var}[Y]}{\alpha^2}$$

Y = comparisons in quicksort for n=1024 E[Y] = 1.4 n log₂ n \approx 14000 Var[Y] = ((21-2 π^2)/3)*n² \approx 441000 (i.e. SD[Y] \approx 664) P(Y \geq 4µ) = P(Y-µ \geq 3µ) \leq Var(Y)/(9µ²) < .000242

1000 times smaller than Markov but still overestimated?: $\sigma/\mu \approx 5\%$, so $4\mu \approx \mu + 60\sigma$ **Theorem:** If Y is an arbitrary random variable with $\mu = E[Y]$, then, for any $\alpha > 0$,

$$P(|Y - \mu| \ge \alpha) \le \frac{\operatorname{Var}[Y]}{\alpha^2}$$

Corr: If

$$\sigma = SD[Y] = \sqrt{\operatorname{Var}[Y]}$$
 Then:
$$P(|Y - \mu| \ge t\sigma) \le \frac{\sigma^2}{t^2\sigma^2} = \frac{1}{t^2}$$

For comparison, for normal it would be < $(2\pi)^{-1/2} \exp(-t^2/2)$ Chebyshev, though weaker, is *much* more general Y ~ Bin(15000, 0.1) $\mu = E[Y] = 1500, \sigma = \sqrt{Var(Y)} = 36.7$

 $P(Y ≥ 6000) = P(Y ≥ 4µ) ≤ \frac{1}{4}$ (Markov) $P(Y ≥ 6000) = P(Y-µ≥ 122σ) ≤ 7x10^{-5}$ (Chebyshev)

Poisson approximation: Y ~ Poi(1500) Rough computer calculation:

 $P(Y \ge 6000) \iff 10^{-1600}$

And the exact value is $\approx 4 \times 10^{-2031}$

Chernoff bounds

B&T pp 284-7

Suppose X ~ Bin(n,p) $\mu = E[X] = pn$

Chernoff bound:

For any
$$0 < \delta < 1$$
,
 $P(X > (1 + \delta)\mu) \le \exp\left(-\frac{\delta^2\mu}{3}\right)$
 $P(X < (1 - \delta)\mu) \le \exp\left(-\frac{\delta^2\mu}{2}\right)$

Chernoff bounds

B&T pp 284-7

router buffers

Model: n = 100,000 computers each independently send a packet with probability p = 0.01 each second. The router processes its buffer every second. How many packet buffers so that router drops a packet:

• Never?

100,000

- With probability ≈1/2, every second?
 ≈1000 (P(X>E[X]) ≈ ½ when X ~ Binomial(100000, .01))
- With probability at most 10⁻⁶, every hour?
 1257
- With probability at most 10⁻⁶, every year?
 1305
- With probability at most 10⁻⁶, since Big Bang?
 1404

Exercise: How would you formulate the exact answer to this problem in terms of binomial probabilities? Can you get a numerical answer? 29

 $X \sim Bin(100,000, 0.01), \mu = E[X] = 1000$ Let p = probability of buffer overflow in 1 second By the Chernoff bound $p = P(X > (1+\delta)\mu) \le \exp\left(-\frac{\delta^2\mu}{3}\right)$ Overflow probability in n seconds $= I - (I - p)^n \leq np \leq n \exp(-\delta^2 \mu/3),$ which is $\leq \epsilon$ provided $\delta \geq \sqrt{(3/\mu)\ln(n/\epsilon)}$. For $\varepsilon = 10^{-6}$ per hour: $\delta \approx .257$, buffers = 1257 For $\varepsilon = 10^{-6}$ per year: $\delta \approx .305$, buffers = 1305 For $\varepsilon = 10^{-6}$ per 15BY: $\delta \approx .404$, buffers = 1404

Tail bounds – bound probabilities of extreme events Important, e.g., for "risk management" applications Three (of many):

- Markov: $P(X \ge k\mu) \le 1/k$ (weak, but general; only need $X \ge 0$ and μ)
- **Chebyshev:** $P(|X-\mu| \ge k\sigma) \le 1/k^2$ (often stronger, but also need σ)
- Chernoff: various forms, depending on underlying distribution; usually I/exponential, vs I/polynomial above
- Generally, more assumptions/knowledge \Rightarrow better bounds
- "Better" than exact distribution?

Maybe, e.g. if latter is unknown or mathematically messy "Better" than, e.g., "Poisson approx to Binomial"? Maybe, e.g. if you need rigorously "≤" rather than just "≈"