
tail bounds 



tail bounds 

For a random variable X, the tails of X are the 
parts of the PMF that are “far” from its mean. 	
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heavy-tailed distribution 
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tail bounds 

Often, we want to bound the probability that a 
random variable X is “extreme.”  Perhaps:	
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applications of tail bounds 

We know that randomized quicksort runs in ���
O(n log n) expected time.  But what’s the 
probability that it takes more than 10 n log(n) 
steps?  More than n1.5 steps?	

If we know the expected advertising cost is 
$1500/day, what’s the probability we go over 
budget? By a factor of 4?	

I only expect 10,000 homeowners to default on 
their mortgages. What’s the probability that 
1,000,000 homeowners default?	
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the lake wobegon fallacy 

“Lake Wobegon, Minnesota, where 	

all the women are strong, ���

all the men are good looking, ���
and ���

all the children are above average…”	
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Markov’s inequality 

In general, an arbitrary random variable could have 
very bad behavior.  But knowledge is power; if we 
know something, can we bound the badness?	


Suppose we know that X is always non-negative.	


Theorem:  If X is a non-negative random 
variable, then for every α > 0, we have	


	

	

Corr: 	

                P(X ≥ αE[X]) ≤ 1/α	
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Markov’s inequality 

Theorem:  If X is a non-negative random 
variable, then for every α > 0, we have	

	

	

Example: if X = daily advertising expenses and	


       E[X] = 1500	

Then, by Markov’s inequality,	
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Markov’s inequality 

Theorem:  If X is a non-negative random 
variable, then for every α > 0, we have	

	

	

Example: if X = time to quicksort n items,  
expectation  E[X] ≈ 1.4 n log n.  What’s 
probability that it takes > 4 times as long as 
expected?	


By Markov’s inequality:	

       P(X ≥ 4 • E[X]) ≤ E[X]/(4 E[X]) = 1/4	
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Markov’s inequality 

Theorem:  If X is a non-negative random 
variable, then for every α > 0, we have	

	


	

Proof:	

	

	

	


E[X] = Σx xP(x) 	


        = Σx<α xP(x) + Σx≥α xP(x)	


        ≥        0          + Σx≥ααP(x)	


        = αP(X ≥ α)	
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Chebyshev’s inequality 

If we know more about a random variable, we 
can often use that to get better tail bounds.	

	

Suppose we also know the variance.	

	


Theorem:  If Y is an arbitrary random variable 
with E[Y] = µ,  then, for any α > 0,	
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Chebyshev’s inequality 

Theorem:  If  Y is an arbitrary random 
variable with µ = E[Y], then, for any α > 0,	

	

	

	


	

	

	


X is non-negative, so we can apply Markov’s 
inequality:	


Proof: 	
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Unfortunate shift from X to Y here; fix 



Chebyshev’s inequality 

Theorem:  If  Y is an arbitrary random 
variable with µ = E[Y], then, for any α > 0,	

	

	

	


	

	

	


X is non-negative, so we can apply Markov’s 
inequality:	


Proof: 	
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Chebyshev’s inequality 

 Y = money spent on advertising in a day	


 E[Y] = 1500	


 Var[Y] = 5002  (i.e.  SD[Y] = 500)	


	


	

	


20	




Chebyshev’s inequality 

Y = comparisons in quicksort for n=1024	


E[Y] = 1.4 n log2 n  ≈ 14000	


Var[Y] = ((21-2π2)/3)*n2 ≈ 441000 

(i.e.  SD[Y] ≈ 664)	


P(Y ≥ 4µ) = P(Y-µ≥ 3µ) ≤  Var(Y)/(9µ2) < .000242	


1000 times smaller than Markov 
but still overestimated?: σ/µ ≈ 5%, so 4µ≈ µ+60σ 
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Chebyshev’s inequality 

Theorem:  If Y is an arbitrary random variable 
with µ = E[Y],  then, for any α > 0,	

	

	

	

	

Corr: If	

	

Then:	
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Chebyshev’s inequality 
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2	


For comparison, for normal it would be < (2π)-1/2 exp(-t2/2) 
Chebyshev, though weaker, is much more general 



super strong tail bounds 

 Y ~ Bin(15000, 0.1)	

µ = E[Y] = 1500, σ = √Var(Y) = 36.7	


P(Y ≥ 6000) = P(Y ≥ 4µ) ≤ ¼              (Markov)	

P(Y ≥ 6000) = P(Y-µ≥ 122σ) ≤ 7x10-5 (Chebyshev)	


	


	

	


Poisson approximation:  Y ~ Poi(1500)	

	
Rough computer calculation: ���

	


           P(Y ≥ 6000) << 10-1600	

	

And the exact value is ≈ 4 x 10-2031	
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Chernoff bounds 

Suppose X ~ Bin(n,p)	

µ = E[X] = pn	

	

Chernoff bound:	
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Chernoff bounds 

Suppose X ~ Bin(n,p)	

µ = E[X] = pn	

	

Chernoff bound:	
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router buffers 
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router buffers 
Model: n = 100,000 computers each independently send a 
packet with probability p = 0.01 each second.  The router 
processes its buffer every second.  How many packet buffers so 
that router drops a packet:	

•  Never?	

    100,000	

•  With probability ≈1/2, every second?	

    ≈1000  (P(X>E[X]) ≈ ½ when X ~ Binomial(100000, .01))	

•  With probability at most 10-6, every hour?	

    1257	

•  With probability at most 10-6, every year?	

    1305	

•  With probability at most 10-6, since Big Bang?	

    1404	
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Exercise: How would you formulate the exact answer to this problem in terms 
of binomial probabilities?  Can you get a numerical answer? 



X ~ Bin(100,000, 0.01),   µ = E[X] = 1000	

Let p = probability of buffer overflow in 1 second	

By the Chernoff bound	

                   p =	


Overflow probability in n seconds ���
    = 1-(1-p)n ≤ np ≤ n exp(- δ2µ/3), 	

which is ≤ ε provided δ ≥ √(3/µ)ln(n/ε).	

  For ε = 10-6 per hour:	
 δ ≈ .257, buffers = 1257	

  For ε = 10-6 per year: 	
 δ ≈ .305, buffers = 1305	

  For ε = 10-6 per 15BY:  δ ≈ .404, buffers = 1404	


router buffers 
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summary 

Tail bounds – bound probabilities of extreme events	

Important, e.g.,  for “risk management” applications	

Three (of many):	


    Markov: P(X ≥ kµ) ≤ 1/k (weak, but general; only need X ≥ 0 and µ)	


    Chebyshev: P(|X-µ| ≥ kσ) ≤ 1/k2 (often stronger, but also need σ)	


    Chernoff: various forms, depending on underlying distribution;  
usually 1/exponential, vs 1/polynomial above	


    Generally, more assumptions/knowledge ⇒ better bounds	


“Better” than exact distribution?  	

Maybe, e.g. if latter is unknown or mathematically messy	


“Better” than, e.g., “Poisson approx to Binomial”?	

Maybe, e.g. if you need rigorously “≤” rather than just “≈”	
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