Probability/Density

the law of large numbers & the CLT
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sums of random variables

If X,Y are independent, what is the distribution of Z=X +Y?

Discrete case:

pz(z) = 2« px(x) ® py(z-X)

Continuous case:

fr2) = [ Fx(x) * fy(z-x) dx

E.g. what is the p.d.f. of the sum of 2 normal RV’s?

W=X+Y +Z?! Similar, but double sums/integrals

V=W+ X+Y + Z? Similar, but triple sums/integrals
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example

If X andY are uniform, then Z = X +Y is not; it’s triangular (ke dice):
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Intuition: X +Y = 0 or = | is rare, but many ways to get X +Y = 0.5



moment generating functions

aka transforms; b&t 229

Powerful math tricks for dealing with distributions

We won'’t do much with it, but mentioned/used in book, so a very
brief introduction:

The k moment of r.v. Xis E[X"];[M.G.F. is M(t) = E[etx]]

X = X0t 4+ X' XL XRL o
0 1 2 3
M(t) = Ele"*] = EX%% + EX'S + EXAL + EXlL +
M) = 0 + E[X' + E[X3L + EXYL +
& M(t) = 0 + 0 + E[X? + E[X3L +
( ) ( ) ( )
2 k
LM (t)|,_, = E[X] 4 M (t) = E[X7?] 4 M () = E[X"]
\_ v, \_ W, \_ )




mgf examples

An example:
MGF of normal(l,0?) is exp(pUt+a?t?/2)
Two key properties:
|. MGF of sum independent r.v.s is product of MGFs:
Mx+v(t) = E[e®**)] = E[e™ e''] = E[e™X] E[e"'] = Mx(t) My(t)
2. Invertibility: MGF uniquely determines the distribution.
e.g.: Mx(t) = exp(at+bt?),with b>0, then X ~ Normal(a,2b)
( Important example: sum of independent normals is normal: ]
X~Normal(M1,01%) Y~Normal(pi2,02?%)
Mx+v(t) = exp(Mit + 01%t4/2) * exp(Mat + 02%t%/2)
= exp[(HitH2)t + (017+02)t%/2]

So X+Y has mean (M +H2), variance (012+02?%) (duh) and is normal!
(way easier than slide 2 way!)




“laws of large numbers”

Consider i.i.d. (independent, identically distributed) R.V.s

X, X0 X ...

Suppose X. has g = E[X] < o and 0? =Var[X] < 0.
What are the mean & variance of their sum?

E[>>", Xi] = nu and Var[>_, X;] = no?

So limit as n— o0 does not exist (except in the degenerate
case where U = 0; note that if U = 0, the center of the data

stays fixed, but if 02 > 0, then the variance is unbounded, i.e.,
its spread grows with n).



weak law of large numbers

Consider i.i.d. (independent, identically distributed) R.V.s

X, X X ...

Note on

Suppose X. has 4 = E[X] < o and 0? =Var[X] < o notation:

in general
X, # X,

. 1 <
What about the sample mean,as n—=o0: X = — Z X,
n 1=1

X1+---+Xn}
= [
n

E[Yn}:E{

n

o o o 2
Var [Yn} — Var {Xl T Xn} ’

n

So, limits do exist; mean is independent of n, variance shrinks.



weak law of large numbers

Lo _ ] —
Continuing:iid Rvs X, X, X,,...; p=E[X]; o2=Var[X]; X, = - ZXi
=1

n

E[yn}:E[

2
] = Var | X, | = Var [Xl il _l_Xn] ?

n n

Expectation is an important guarantee.

BUT: observed values may be far from expected values.

E.g., if Xi ~ Bernouli('%2), the E[Xi]= /2, but Xiis NEVER Y-.

s it also possible that sample mean of Xi’s will be far from /2!

Always? Usually? Sometimes! Never?



weak law of large numbers

b&t 5.2
~N

i
Forany € > 0,as n = o

Pr(|yn—,u|>e)%0

Proof: (assume 02 < )

E[YR}ZE{X1+---+XT,}:N

n

o o o 2
Var [Yn] = Var {Xl + - +X”’} °

By Chebyshev inequality,

Pr (| X, —pu| >¢€) < > 0



sttong law of large numbers

b&t 5.5

i.i.d. (independent, identically distributed) random vars

_ 1
X, X0, X, ... X, = 5;)(7;
X has g = E[X] < o .

X1+ -+ X,
Pr(lim( LT >—,u>—1
n—> 00 T

Strong Law = Weak Law (but not vice versa)

Strong law implies that for any € > 0, there are only a finite
number of n satisfying the weak law condition | X,, — | > ¢
(almost surely, i.e., with probability )

Supports the intuition of probability as long term frequency



weak vs strong laws

Weak Law:
X o+ X,
limPr<| LT —,u|>e>:O

n— oo /A’

Strong Law:

X1+ -+ X,
Pr(lim( L )z,u)zl
n— o0 T

How do they differ? Imagine an infinite 2-D table, whose rows are indp
infinite sample sequences Xi. Pick €. Imagine cell m,n lights up if average of
|5 n samples in row m is > € away from J.

WLLN says fraction of lights in n*" column goes to zero as n = . It does
not prohibit every row from having oo lights, so long as frequency declines.

SLLN also says only a vanishingly small fraction of rows can have o lights.



Sample i; Mean(1..i)

sample mean — population mean
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Sample i; Mean(1..i)

sample mean — population mean
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Sample i; Mean(1..i)

another example
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Sample i; Mean(1..i)

another example
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another example
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weak vs strong laws

Weak Law:
X o+ X,
limPr<| LT —,u|>e>:O

n— oo /A’

Strong Law:

X1+ -+ X,
Pr(lim( L )z,u)zl
n— o0 T

How do they differ? Imagine an infinite 2-D table, whose rows are indp
infinite sample sequences Xi. Pick €. Imagine cell m,n lights up if average of
|5 n samples in row m is > € away from J.

WLLN says fraction of lights in n*" column goes to zero as n = . It does
not prohibit every row from having oo lights, so long as frequency declines.

SLLN also says only a vanishingly small fraction of rows can have o lights.



the law of large numbers

Note: Dn = E[ | 21 <i<n(Xi-H) | ] grows with n,but Dn/n = 0

Justifies the “frequency” interpretation of probability

e
<

“Regression toward the mean”

© _|
o

Gambler’s fallacy: “I'm due for a win!”  _

© |
o

n(1..n

Draw n; Mea
0.4

“Swamps, but does not compensate”

0.2

“Result will usually be close to the mean”
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Many web demos, e.g.
http://stat-www.berkeley.edu/~stark/Java/Html/lIn.htm
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normal random variable

X is a normal random variable X ~ N(l,0?)

1 2 /5,2
_ (x—p)</20
f(x) = re

EX]=p Var[X]=o0?

0.0 0.1 02 03 04 05
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the central limit theorem (CLT)

Cd (independent, identically distributed) random vars
Xp Xy Xy, ..

X. has 4 = E[X]] < o0 and 02 =Var[X] < &
As n = o0,

7—1§:X- N
C n_nizl ’ 'u’n

Restated: As h — o0,

X1+ Xo+ 4+ X —npu |
e~ > N(0,1)

Note: on slide 5, showed sum of normals is exactly normal. Maybe not a surprise,

given that sums of almost anything become approximately normal... )1
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istributions

CLT applies even to whacky d

o)
WO
I I I I I I I
0€0'0 S¢0'0 0c00 SLOO 0LO0O SO000 0000
Aysus@/Aungeqold
0] -
o)
0]
o)
- o
1l o
c o
5 L
(0]
o)
o)
[}
o)
[}
o
[}
o
o L
0]
o)
o)
[}
o)
o) -
0]
o)
O —
I I I I I I I
900 S00 700 €00 c00 100 000

Aysuaq/Ayigeqold

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

24

x-bar

0200

I
G100

I
0100

Aususq/Anqeqoid

G000

G200

I
0200

I I
G100 0L00

Aysuaq/Ayigeqold

I
G000

I
0000

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0



Probability/Density
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perhaps)
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CLT in the real world

CLT is the reason many things appear normally distributed
Many quantities = sums of (roughly) independent random vars

Exam scores: sums of individual problems

People’s heights: sum of many genetic & environmental factors
Measurements: sums of various small instrument errors

26



in the real world...

25
|

Human height is
approximately normal. =

20
|

Why might that be
true! B B

Frequency
|
[

R.A. Fisher (1918) o .

. | I I I I | I |
noted it would follow 64 66 68 70 72 74 76 78

from CLT if height Male Height in Inches
were the sum of ’

many independent random effects, e.g. many genetic factors (plus
some environmental ones like diet). |.e., suggested part of mechanism
by looking at shape of the curve.
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rolling more dice

Roll 10 6-sided dice micuiouiomlc
X = total value of all 10 dice % : L . : . .
Winif: X <25 or X > 45 "ol fe o) e .

E[X] = E[Y;2, X;] = 10E[X;] = 10(7/2) =

Var[X] = Var[>.Y, X;] = 10Var[X,] = 10(35/12) = 350/12

P(win) =1— P (255 < X <44.5) =

1 _ 25.5—35 X-35 44.5—35
\/350/12 \/350/12 \/350/12
~ 2(1 — P(1.76)) ~ 0.079
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example: polling

Poll of 100 randomly chosen voters finds that K of them favor proposition 666.
So: the estimated proportion in favor is K/100 = g
Suppose: the true proportion in favor is p.

Q. Give an upper bound on the probability that your estimate is off by > 10
percentage points, i.e., the probability of |g - p| > 0.1

A. K= X +...+ Xjo0, where X; are Bernoulli(p), so by CLT:
K = normal with mean 100p and variance 100p(1-p); or:
g = normal with mean p and variance &% = p(I-p)/100
Letting Z = (g-p)/O (a standardized r.v.), then |[g - p| > 0.1 & |Z] > O0.l/C

By symmetry of the normal

Peer(|g-p| > 0.1)) = 2 Prorm(Z>0.1/G) =2 (I - ®(0.1/0))
Unfortunately, p & 0 are unknown, but % = p(1-p)/100 is maximized when p =
1/2,s0 02 < 1/400,i.e. 0 < 1/20, hence = corcice: How much

p) (| - (D(().|/o-)) < 2(|_q)(2)) ~|0.046 smaller can o be if p # 1/2?

l.e., less than a 5% chance of an error as large as 10 percentage points.
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summary

Distribution of X +Y: summations, integrals (or MGF)
Distribution of X +Y # distribution X orY in general
Distribution of X +Y is normal if X andY are normal ()
(ditto for a few other special distributions)
Sums generally don’t “converge,”’ but averages do:
Weak Law of Large Numbers

Strong Law of Large Numbers

Most surprisingly, averages all converge to the same distribution:

the Central Limit Theorem says sample mean — normal
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