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the law of  large numbers & the CLT
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sums of  random variables

If X,Y are independent, what is the distribution of  Z = X + Y ?	


Discrete case:	


  pZ(z) = Σx pX(x) • pY(z-x) 	


Continuous case:	


fZ(z) = ∫     fX(x) • fY(z-x) dx	


E.g. what is the p.d.f. of the sum of 2 normal RV’s?	


W = X + Y + Z ?   Similar, but double sums/integrals	


!

V = W + X + Y + Z ?   Similar, but triple sums/integrals
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+∞

y = z - x

-∞



example

!

If X and Y are uniform,  then Z = X + Y is not; it’s triangular (like dice):	


!

!

!

!

!

!

!

!

Intuition: X + Y ≈ 0 or ≈ 1 is rare, but many ways to get X + Y ≈ 0.5
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moment generating functions

Powerful math tricks for dealing with distributions	


We won’t do much with it, but mentioned/used in book, so a very 
brief introduction: 	


The kth moment of r.v.  X is E[Xk];  M.G.F.  is M(t) = E[etX]
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aka transforms; b&t 229



mgf  examples
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An example:	


MGF of normal(μ,σ2) is exp(μt+σ2t2/2)	


Two key properties:	


1. MGF of sum independent r.v.s is product of MGFs:	


MX+Y(t) = E[et(X+Y)] = E[etX etY] = E[etX] E[etY] = MX(t) MY(t)	


2. Invertibility: MGF uniquely determines the distribution.	


e.g.: MX(t) = exp(at+bt2),with b>0, then X ~ Normal(a,2b)	


Important example: sum of independent normals is normal:	


              X~Normal(μ1,σ1
2)   Y~Normal(μ2,σ2

2)   	


MX+Y(t) = exp(μ1t + σ1
2t2/2) • exp(μ2t + σ2

2t2/2)	


             = exp[(μ1+μ2)t + (σ1
2+σ2

2)t2/2]	


So X+Y has mean (μ1+μ2), variance (σ1
2+σ2

2) (duh) and is normal!  
(way easier than slide 2 way!)



“laws of  large numbers”

Consider i.i.d. (independent, identically distributed) R.V.s 	

!
    X1, X2, X3, …	

!
Suppose Xi has μ = E[Xi] < ∞ and σ2 = Var[Xi] < ∞.   
What are the mean & variance of their sum?	


!

So limit as n→∞ does not exist (except in the degenerate 
case where μ = 0;  note that if μ = 0, the center of the data 
stays fixed, but if σ2 > 0, then the variance is unbounded,  i.e., 
its spread grows with n).
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weak law of  large numbers

Consider i.i.d. (independent, identically distributed) R.V.s  	


    X1, X2, X3, …	


Suppose Xi has μ = E[Xi] < ∞ and σ2 = Var[Xi] < ∞	

!
What about the sample mean, as n→∞:	

!
!
!
!
!
!
So, limits do exist; mean is independent of n, variance shrinks.
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Continuing: iid RVs  X
1
, X

2
, X

3
, …;   μ = E[Xi];   σ2 = Var[Xi]; 	


!
!
!

Expectation is an important guarantee.  	


BUT:  observed values may be far from expected values.  	


E.g., if Xi ~ Bernouli(½), the E[Xi]= ½, but Xi is NEVER ½.	


Is it also possible that sample mean of Xi’s will be far from ½?	


Always?  Usually?  Sometimes?  Never?

weak law of  large numbers
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weak law of  large numbers

For any ε > 0, as n → ∞
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Proof: (assume σ2  < ∞)

By Chebyshev inequality,

b&t 5.2



strong law of  large numbers

i.i.d. (independent, identically distributed) random vars 	

!
    X1, X2, X3, …

Xi has μ = E[Xi] < ∞

Strong Law ⇒ Weak Law (but not vice versa)	


Strong law implies that for any ε > 0, there are only a finite 
number of n satisfying the weak law condition  
(almost surely, i.e., with probability 1)	


Supports the intuition of probability as long term frequency
���10
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weak vs strong laws

Weak Law:	


!

!

Strong Law:	


!

!

!

How do they differ? Imagine an infinite 2-D table, whose rows are indp 
infinite sample sequences Xi.  Pick ε.  Imagine cell m,n lights up if average of 
1st n samples in row m is > ε away from μ.  	


WLLN says fraction of lights in nth column goes to zero as n →∞.  It does 
not prohibit every row from having ∞ lights, so long as frequency declines.  	


SLLN also says only a vanishingly small fraction of rows can have ∞ lights.
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sample mean → population mean
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Xi ~ Unif(0,1)	

limn→∞ Σi=1 Xi/n→ μ=0.5n
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sample mean → population mean
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another example
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another example
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another example
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weak vs strong laws

Weak Law:	


!

!

Strong Law:	


!

!

!

How do they differ? Imagine an infinite 2-D table, whose rows are indp 
infinite sample sequences Xi.  Pick ε.  Imagine cell m,n lights up if average of 
1st n samples in row m is > ε away from μ.  	


WLLN says fraction of lights in nth column goes to zero as n →∞.  It does 
not prohibit every row from having ∞ lights, so long as frequency declines.  	


SLLN also says only a vanishingly small fraction of rows can have ∞ lights.
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the law of  large numbers

Note: Dn = E[ | Σ1≤i≤n(Xi-μ) | ] grows with n, but Dn/n → 0	

!

Justifies the “frequency” interpretation of probability	


“Regression toward the mean”	


Gambler’s fallacy:  “I’m due for a win!”	


“Swamps, but does not compensate”	


“Result will usually be close to the mean”	


    	

Many web demos, e.g.  
  http://stat-www.berkeley.edu/~stark/Java/Html/lln.htm
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normal random variable

 X is a normal random variable   X ~ N(μ,σ2)
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the central limit theorem (CLT)

i.i.d. (independent, identically distributed) random vars	


   X1, X2, X3, …	


Xi has μ = E[Xi] < ∞ and σ2 = Var[Xi] < ∞	

As n → ∞, 	

!
!
!
!
Restated:  As n → ∞,
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Note: on slide 5, showed sum of normals is exactly normal.  Maybe not a surprise, 
given that sums of almost anything become approximately normal...

Xn =
1

n

nX

i=1

Xi ⇠ N

✓
µ,

�2

n

◆



demo
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CLT applies even to whacky distributions
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extreme tails, 
perhaps)



CLT in the real world

CLT is the reason many things appear normally distributed	

Many quantities = sums of (roughly) independent random vars	

!
Exam scores:  sums of individual problems	

People’s heights: sum of many genetic & environmental factors	

Measurements: sums of various small instrument errors	

...	
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Human height is  
approximately normal.	


Why might that be  
true?  	


R.A. Fisher (1918)  
noted it would follow  
from CLT if height  
were the sum of  
many independent random effects, e.g. many genetic factors (plus 
some environmental ones like diet). I.e., suggested part of mechanism 
by looking at shape of the curve.

in the real world…
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rolling more dice

 Roll 10 6-sided dice

 X = total value of all 10 dice	

 Win if:  X ≤ 25   or  X ≥ 45
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E[X] = E[
P10

i=1 Xi] = 10E[X1] = 10(7/2) = 35

Var[X] = Var[
P10

i=1 Xi] = 10Var[X1] = 10(35/12) = 350/12

P (win) = 1� P (25.5  X  44.5) =

1� P

✓
25.5�35p
350/12

 X�35p
350/12

 44.5�35p
350/12

◆

⇡ 2(1� �(1.76)) ⇡ 0.079



example: polling
Poll of 100 randomly chosen voters finds that K of them favor proposition 666. 	

	
 So: the estimated proportion in favor is K/100 = q	

	
 Suppose: the true proportion in favor is p.  	

Q.  Give an upper bound on the probability that your estimate is off by > 10 
percentage points, i.e., the probability of |q - p| > 0.1	

 A.  K = X1 +…+ X100, where Xi are Bernoulli(p), so by CLT:	

	
 K ≈ normal with mean 100p and variance 100p(1-p); or:	

	
 q ≈ normal with mean p and variance σ2 = p(1-p)/100	

Letting Z = (q-p)/σ (a standardized r.v.), then |q - p| > 0.1 ⇔ |Z| > 0.1/σ 
By symmetry of the normal	

	
 PBer( |q - p| > 0.1 ) ≈ 2 Pnorm( Z > 0.1/σ ) = 2 (1 - Φ(0.1/σ))	

Unfortunately, p & σ are unknown, but σ2 = p(1-p)/100 is maximized when p = 
1/2, so σ2 ≤ 1/400, i.e. σ ≤ 1/20, hence 	

	
 2 (1 - Φ(0.1/σ)) ≤ 2(1-Φ(2)) ≈ 0.046	

I.e., less than a 5% chance of an error as large as 10 percentage points.
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Exercise: How much 
smaller can σ be if p ≠ 1/2? 



summary

Distribution of X + Y: summations, integrals (or MGF)	


Distribution of X + Y ≠ distribution X or Y in general	


Distribution of X + Y is normal if X and Y are normal               (*)	


(ditto for a few other special distributions)	


Sums generally don’t “converge,” but averages do:	


Weak  Law of Large Numbers	


Strong Law of Large Numbers	


!

Most surprisingly, averages all converge to the same distribution:  	


the Central Limit Theorem says sample mean → normal	

[Note that (*) essentially a prerequisite, and that (*) is exact, whereas CLT is approximate]
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