the law of large numbers \& the CLT

$$
\operatorname{Pr}\left(\lim _{n \rightarrow \infty}\left(\frac{X_{1}+\cdots+X_{n}}{n}\right)=\mu\right)=1
$$

If X, Y are independent, what is the distribution of $Z=X+Y$?
Discrete case:

$$
\mathrm{p}_{\mathrm{Z}}(z)=\Sigma_{x} \mathrm{p}_{\mathrm{X}}(x) \cdot \mathrm{p}_{\mathrm{Y}}(z-x)
$$

Continuous case:

$$
\mathrm{f}_{\mathrm{Z}}(z)=\int_{-\infty}^{+\infty} \mathrm{f}_{\mathrm{X}}(x) \cdot \mathrm{f}_{\mathrm{Y}}(z-x) \mathrm{dx}
$$

E.g. what is the p.d.f. of the sum of 2 normal RV's?
$W=X+Y+Z$? Similar, but double sums/integrals
$V=W+X+Y+Z$? Similar, but triple sums/integrals

If X and Y are uniform, then $Z=X+Y$ is not; it's triangular (ike dice):

moment generating functions

Powerful math tricks for dealing with distributions
aka transforms; b\&t 229
We won't do much with it, but mentioned/used in book, so a very brief introduction:
The $k^{\text {th }}$ moment of r.v. X is $E\left[X^{k}\right] ; M . G . F$ is $M(t)=E\left[e^{t \mathrm{t}}\right]$

$$
\begin{aligned}
& e^{t X}=X^{0} \frac{t^{0}}{0!}+X^{1 \frac{1}{1}} \frac{1}{1!}+X^{2} \frac{t^{2}}{2!}+X^{3} \frac{3^{3}}{3!}+ \\
& M(t)=E\left[e^{t X}\right]=E\left[X^{0}\right] \frac{t^{0}}{0!}+E\left[X^{1}\right] \frac{t^{1}}{1!}+E\left[X^{2} \frac{t^{2}}{2!}+E\left[X^{3}\right] \frac{t^{3}}{3!}+\right. \\
& \frac{d}{d t} M(t)=0+E\left[X^{1}\right]+E\left[X^{2}\right] \frac{t^{1}}{1!}+E\left[X^{3}\right] \frac{t^{2}}{2!}+ \\
& \frac{d^{2}}{d t^{2}} M(t)=0+0+E\left[X^{2}\right]+E\left[X^{3}\right] \frac{t^{1}}{1!}+ \\
& \left.\frac{d}{d t} M(t)\right|_{t=0}=E[X] \\
& \left.\frac{d^{2}}{d t^{2}} M(t)\right|_{t=0}=E\left[X^{2}\right] \quad \ldots \\
& \left.\frac{d^{k}}{d t^{k}} M(t)\right|_{t=0}=E\left[X^{k}\right]
\end{aligned}
$$

An example:
MGF of normal $\left(\mu, \sigma^{2}\right)$ is $\exp \left(\mu \mathrm{t}+\sigma^{2} \mathrm{t}^{2} / 2\right)$
Two key properties:
I. MGF of sum independent r.v.s is product of MGFs:

$$
M_{X+Y}(t)=E\left[e^{t(X+Y)}\right]=E\left[e^{t X} e^{t^{Y}}\right]=E\left[e^{t X}\right] E\left[e^{t Y}\right]=M_{X}(t) M_{Y}(t)
$$

2. Invertibility: MGF uniquely determines the distribution.

$$
\text { e.g.: } M_{x}(t)=\exp \left(a t+b t^{2}\right) \text {, with } b>0 \text {, then } X \sim \operatorname{Normal}(a, 2 b)
$$

Important example: sum of independent normals is normal:

$$
\begin{aligned}
& X \sim \operatorname{Normal}\left(\mu_{1}, \sigma_{1}{ }^{2}\right) \quad Y \sim \operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right) \\
M_{X+Y}(\mathrm{t}) & =\exp \left(\mu_{1} t+\sigma_{1}{ }^{2} \mathrm{t}^{2} / 2\right) \cdot \exp \left(\mu_{2} t+\sigma_{2}^{2} t^{2} / 2\right) \\
= & \exp \left[\left(\mu_{1}+\mu_{2}\right) t+\left(\sigma_{1}{ }^{2}+\sigma_{2}^{2}\right) t^{2} / 2\right]
\end{aligned}
$$

So $X+Y$ has mean $\left(\mu_{1}+\mu_{2}\right)$, variance $\left(\sigma_{1}{ }^{2}+\sigma_{2}{ }^{2}\right)$ (duh) and is normal! (way easier than slide 2 way!)

Consider i.i.d. (independent, identically distributed) R.V.s

$$
X_{1}, X_{2}, X_{3}, \ldots
$$

Suppose X_{i} has $\mu=\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]<\infty$ and $\sigma^{2}=\operatorname{Var}\left[\mathrm{X}_{\mathrm{i}}\right]<\infty$.
What are the mean $\&$ variance of their sum?

$$
\mathrm{E}\left[\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}\right]=\mathrm{n} \mu \text { and } \operatorname{Var}\left[\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}\right]=\mathrm{n} \sigma^{2}
$$

So limit as $\mathrm{n} \rightarrow \infty$ does not exist (except in the degenerate case where $\mu=0$; note that if $\mu=0$, the center of the data stays fixed, but if $\sigma^{2}>0$, then the variance is unbounded, i.e., its spread grows with n).

Consider i.i.d. (independent, identically distributed) R.V.s

$$
X_{1}, X_{2}, X_{3}, \ldots
$$

Suppose X_{i} has $\mu=\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]<\infty$ and $\sigma^{2}=\operatorname{Var}\left[\mathrm{X}_{\mathrm{i}}\right]<\infty$
What about the sample mean, as $\mathrm{n} \rightarrow \infty: \bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$

$$
\begin{gathered}
\mathrm{E}\left[\bar{X}_{n}\right]=\mathrm{E}\left[\frac{X_{1}+\cdots+X_{n}}{n}\right]=\mu \\
\operatorname{Var}\left[\bar{X}_{n}\right]=\operatorname{Var}\left[\frac{X_{1}+\cdots+X_{n}}{n}\right]=\frac{\sigma^{2}}{n}
\end{gathered}
$$

So, limits do exist; mean is independent of n, variance shrinks.

Continuing: iid $\mathrm{RV} \mathrm{K}_{\mathrm{l}}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots ; \quad \mu=\mathrm{E}\left[\mathrm{X}_{\mathrm{l}}\right] ; \quad \sigma^{2}=\operatorname{Var}\left[\mathrm{X}_{\mathrm{i}}\right] ; \bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
$\mathrm{E}\left[\bar{X}_{n}\right]=\mathrm{E}\left[\frac{X_{1}+\cdots+X_{n}}{n}\right]=\mu \quad \operatorname{Var}\left[\bar{X}_{n}\right]=\operatorname{Var}\left[\frac{X_{1}+\cdots+X_{n}}{n}\right]=\frac{\sigma^{2}}{n}$

Expectation is an important guarantee.
BUT: observed values may be far from expected values.
E.g., if $X_{i} \sim \operatorname{Bernoul}(1 / 2)$, the $\mathrm{E}\left[X_{i}\right]=1 / 2$, but X_{i} is NEVER $1 / 2$.

Is it also possible that sample mean of X_{i} 's will be far from $1 / 2$?
Always? Usually? Sometimes? Never?

weak law of large numbers

b\&t 5.2
For any $\varepsilon>0$, as $n \rightarrow \infty$

$$
\operatorname{Pr}\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right) \rightarrow 0
$$

Proof: (assume $\sigma^{2}<\infty$)

$$
\begin{gathered}
\mathrm{E}\left[\bar{X}_{n}\right]=\mathrm{E}\left[\frac{X_{1}+\cdots+X_{n}}{n}\right]=\mu \\
\operatorname{Var}\left[\bar{X}_{n}\right]=\operatorname{Var}\left[\frac{X_{1}+\cdots+X_{n}}{n}\right]=\frac{\sigma^{2}}{n}
\end{gathered}
$$

By Chebyshev inequality,

$$
\operatorname{Pr}\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right) \leq \frac{\sigma^{2}}{n \epsilon^{2}} \xrightarrow{n \rightarrow \infty} 0
$$

i.i.d. (independent, identically distributed) random vars

$$
\begin{array}{ll}
\mathrm{X}_{\mathrm{l}}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots & \bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \\
\text { has } \mathrm{U}=\mathrm{F}[\mathrm{X}]<\infty &
\end{array}
$$

X_{i} has $\mu=E\left[X_{i}\right]<\infty$

$$
\operatorname{Pr}\left(\lim _{n \rightarrow \infty}\left(\frac{X_{1}+\cdots+X_{n}}{n}\right)=\mu\right)=1
$$

Strong Law \Rightarrow Weak Law (but not vice versa)
Strong law implies that for any $\varepsilon>0$, there are only a finite number of n satisfying the weak law condition $\left|\bar{X}_{n}-\mu\right| \geq \epsilon$ (almost surely, i.e., with probability I)
Supports the intuition of probability as long term frequency

Weak Law:

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|\frac{X_{1}+\cdots+X_{n}}{n}-\mu\right|>\epsilon\right)=0
$$

Strong Law:

$$
\operatorname{Pr}\left(\lim _{n \rightarrow \infty}\left(\frac{X_{1}+\cdots+X_{n}}{n}\right)=\mu\right)=1
$$

How do they differ? Imagine an infinite 2-D table, whose rows are indp infinite sample sequences X_{i}. Pick ε. Imagine cell m, n lights up if average of $I^{\text {st }} n$ samples in row m is $>\varepsilon$ away from μ.
WLLN says fraction of lights in $n^{\text {th }}$ column goes to zero as $n \rightarrow \infty$. It does not prohibit every row from having ∞ lights, so long as frequency declines. SLLN also says only a vanishingly small fraction of rows can have ∞ lights.

demo

another example

another example

Weak Law:

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|\frac{X_{1}+\cdots+X_{n}}{n}-\mu\right|>\epsilon\right)=0
$$

Strong Law:

$$
\operatorname{Pr}\left(\lim _{n \rightarrow \infty}\left(\frac{X_{1}+\cdots+X_{n}}{n}\right)=\mu\right)=1
$$

How do they differ? Imagine an infinite 2-D table, whose rows are indp infinite sample sequences X_{i}. Pick ε. Imagine cell m, n lights up if average of $I^{\text {st }} n$ samples in row m is $>\varepsilon$ away from μ.
WLLN says fraction of lights in $n^{\text {th }}$ column goes to zero as $n \rightarrow \infty$. It does not prohibit every row from having ∞ lights, so long as frequency declines. SLLN also says only a vanishingly small fraction of rows can have ∞ lights.

Note: $D_{n}=E\left[\left|\Sigma_{1 \leq i \leq n}\left(X_{i}-\mu\right)\right|\right]$ grows with n, but $D_{n} / n \rightarrow 0$

Justifies the "frequency" interpretation of probability
"Regression toward the mean"
Gambler's fallacy: "l'm due for a win!"
"Swamps, but does not compensate"
"Result will usually be close to the mean"

Many web demos, e.g. http://stat-www.berkeley.edu/~stark/Java/Html//ln.htm
X is a normal random variable $X \sim N\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
f(x) & =\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} \\
E[X] & =\mu \quad \operatorname{Var}[X]=\sigma^{2}
\end{aligned}
$$

the central limit theorem (CLT)

i.i.d. (independent, identically distributed) random vars $X_{1}, X_{2}, X_{3}, \ldots$
X_{i} has $\mu=\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]<\infty$ and $\sigma^{2}=\operatorname{Var}\left[\mathrm{X}_{\mathrm{i}}\right]<\infty$
As $n \rightarrow \infty$,

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

Restated: As $\mathrm{n} \rightarrow \infty$,

$$
\frac{X_{1}+X_{2}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \longrightarrow N(0,1)
$$

Note: on slide 5 , showed sum of normals is exactly normal. Maybe not a surprise, given that sums of almost anything become approximately normal...

demo

CLT applies even to whacky distributions

CLT in the real world

CLT is the reason many things appear normally distributed Many quantities = sums of (roughly) independent random vars

Exam scores: sums of individual problems
People's heights: sum of many genetic \& environmental factors Measurements: sums of various small instrument errors

Human height is approximately normal.

Why might that be true?
R.A. Fisher (1918)
noted it would follow
from CLT if height
were the sum of
many independent random effects, e.g. many genetic factors (plus
some environmental ones like diet). l.e., suggested part of mechanism by looking at shape of the curve.

Roll 10 6-sided dice
$X=$ total value of all 10 dice
Win if: $X \leq 25$ or $X \geq 45$

$\mathrm{E}[X]=\mathrm{E}\left[\sum_{i=1}^{10} X_{i}\right]=10 \mathrm{E}\left[X_{1}\right]=10(7 / 2)=35$
$\operatorname{Var}[X]=\operatorname{Var}\left[\sum_{i=1}^{10} X_{i}\right]=10 \operatorname{Var}\left[X_{1}\right]=10(35 / 12)=350 / 12$
$P($ win $)=1-P(25.5 \leq X \leq 44.5)=$

$$
\begin{aligned}
& 1-P\left(\frac{25.5-35}{\sqrt{350 / 12}} \leq \frac{X-35}{\sqrt{350 / 12}} \leq \frac{44.5-35}{\sqrt{350 / 12}}\right) \\
& \approx 2(1-\Phi(1.76)) \approx 0.079
\end{aligned}
$$

Poll of 100 randomly chosen voters finds that K of them favor proposition 666.
So: the estimated proportion in favor is $K / I 00=q$
Suppose: the true proportion in favor is p.
Q. Give an upper bound on the probability that your estimate is off by >10 percentage points, i.e., the probability of $|q-p|>0 . I$
A. $K=X_{1}+\ldots+X_{100}$, where X_{i} are Bernoulli (p), so by CLT:
$K \approx$ normal with mean $100 p$ and variance $100 p(1-p)$; or:
$q \approx$ normal with mean p and variance $\sigma^{2}=p(I-p) / 100$
Letting $Z=(q-p) / \sigma$ (a standardized r.v.), then $|q-p|>0 . I \Leftrightarrow|Z|>0 . I / \sigma$
By symmetry of the normal

$$
\operatorname{PBer}(|q-p|>0.1) \approx 2 P_{\text {norm }}(Z>0.1 / \sigma)=2(I-\Phi(0.1 / \sigma))
$$

Unfortunately, $p \& \sigma$ are unknown, but $\sigma^{2}=p(I-p) / I 00$ is maximized when $p=$ $I / 2$, so $\sigma^{2} \leq I / 400$, i.e. $\sigma \leq I / 20$, hence

$$
2(\mathrm{I}-\Phi(0 . \mathrm{I} / \sigma)) \leq 2(\mathrm{I}-\Phi(2)) \approx 0.046
$$

Exercise: How much smaller can σ be if $p \neq 1 / 2$?
I.e., less than a 5% chance of an error as large as 10 percentage points.

Distribution of $X+Y$: summations, integrals (or MGF)
Distribution of $X+Y \neq$ distribution X or Y in general
Distribution of $X+Y$ is normal if X and Y are normal
(ditto for a few other special distributions)
Sums generally don't "converge," but averages do:
Weak Law of Large Numbers
Strong Law of Large Numbers

Most surprisingly, averages all converge to the same distribution: the Central Limit Theorem says sample mean \rightarrow normal
[Note that (*) essentially a prerequisite, and that (*) is exact, whereas CLT is approximate]

