CSE 312 Autumn 2013 Maximum Likelihood Estimators and the EM algorithm

Т

Outline

MLE: Maximum Likelihood Estimators EM: the Expectation Maximization Algorithm

Learning From Data: MLE

Maximum Likelihood Estimators

Parameter Estimation

Given: independent samples $x_1, x_2, ..., x_n$ from a parametric distribution $f(x|\theta)$

Goal: estimate θ .

E.g.: Given sample HHTTTTTHTHTHTTHH of (possibly biased) coin flips, estimate

 θ = probability of Heads

 $f(x|\theta)$ is the Bernoulli probability mass function with parameter θ

Likelihood

$$\begin{split} \mathsf{P}(\mathsf{x} \mid \theta): \ \mathsf{Probability} \ \mathsf{of} \ \mathsf{event} \ \mathsf{x} \ \mathsf{given} \ \mathit{model} \ \theta \\ \mathsf{Viewed} \ \mathsf{as} \ \mathsf{a} \ \mathsf{function} \ \mathsf{of} \ \mathsf{x} \ (\mathsf{fixed} \ \theta), \ \mathsf{it's} \ \mathsf{a} \ \mathit{probability} \\ \mathsf{E.g.}, \ \Sigma_{\mathsf{x}} \ \mathsf{P}(\mathsf{x} \mid \theta) = \mathsf{I} \end{split}$$

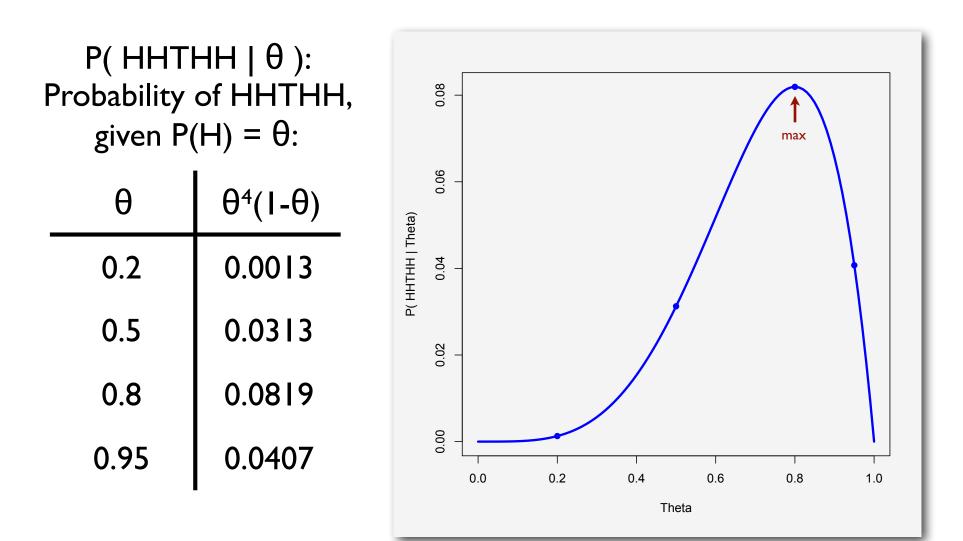
Viewed as a function of θ (fixed x), it's called likelihood

E.g., $\Sigma_{\theta} P(x \mid \theta)$ can be anything; *relative* values of interest. E.g., if θ = prob of heads in a sequence of coin flips then P(HHTHH | .6) > P(HHTHH | .5),

I.e., event HHTHH is more likely when θ = .6 than θ = .5

And what θ make HHTHH most likely?

Likelihood Function



Maximum Likelihood Parameter Estimation

One (of many) approaches to param. est. Likelihood of (indp) observations $x_1, x_2, ..., x_n$

$$L(x_1, x_2, \dots, x_n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta)$$

As a function of θ , what θ maximizes the likelihood of the data actually observed Typical approach: $\frac{\partial}{\partial \theta} L(\vec{x} \mid \theta) = 0$ or $\frac{\partial}{\partial \theta} \log L(\vec{x} \mid \theta) = 0$

Example I

n independent coin flips, $x_1, x_2, ..., x_n$; n_0 tails, n_1 heads, $n_0 + n_1 = n; \ \theta = \text{probability of heads}$ 0.002 0.0015 0.001 $L(x_1, x_2, \dots, x_n \mid \theta) = (1 - \theta)^{n_0} \theta^{n_1}$ 0.0005 $\log L(x_1, x_2, \dots, x_n \mid \theta) = n_0 \log(1 - \theta) + n_1 \log \theta$ $\frac{\partial}{\partial \theta} \log L(x_1, x_2, \dots, x_n \mid \theta) = \frac{-n_0}{1-\theta} + \frac{n_1}{\theta}$ Setting to zero and solving: Observed fraction of successes in sample is

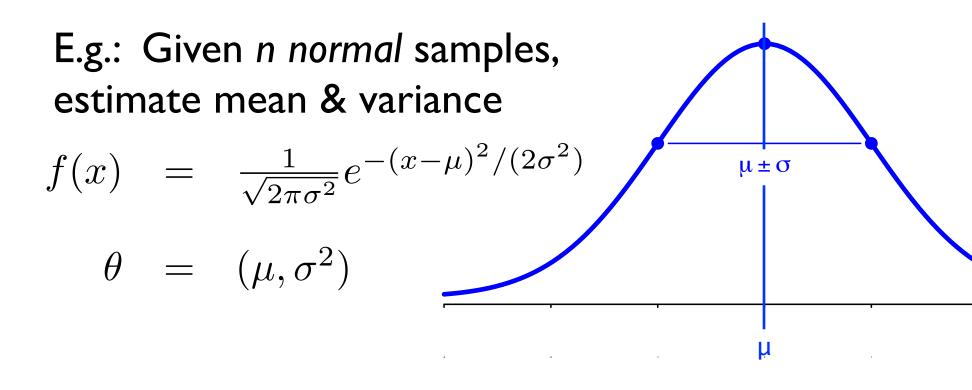
$$\hat{\theta} = \frac{n_1}{n}$$

MLE of success probability in *population*

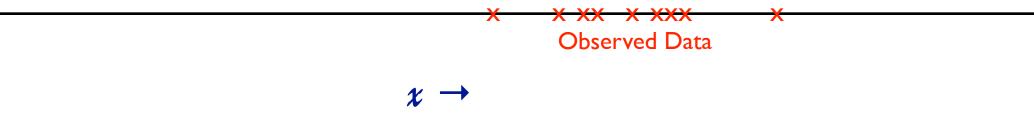
(Also verify it's max, not min, & not better on boundary)

Parameter Estimation

Given: indp samples $x_1, x_2, ..., x_n$ from a parametric distribution $f(x|\theta)$, estimate: θ .

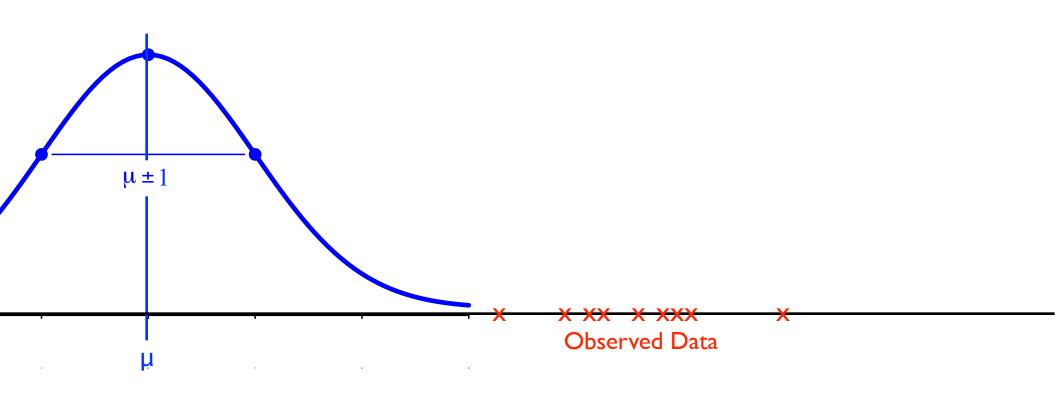


Ex2: I got data; a little birdie tells me it's normal, and promises $\sigma^2 = I$



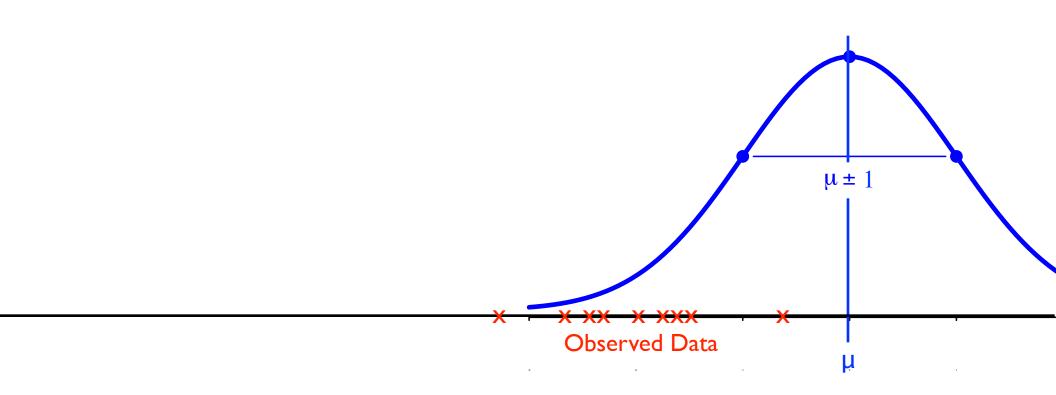
Which is more likely: (a) this?

 μ unknown, $\sigma^2 = 1$



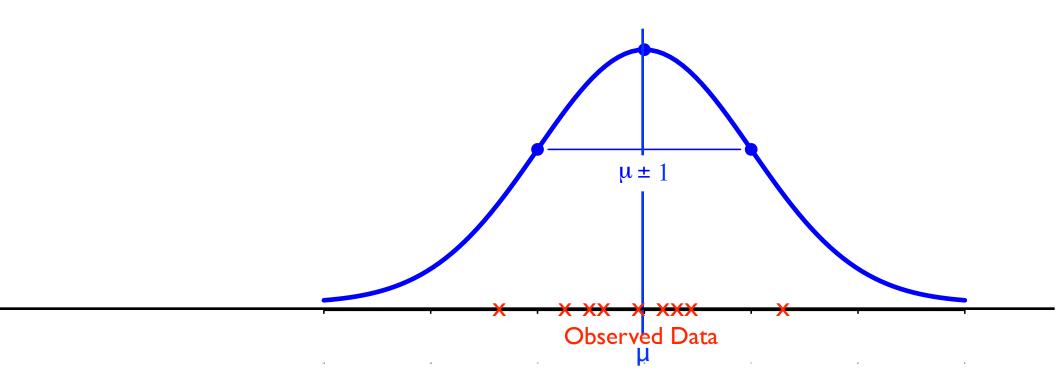
Which is more likely: (b) or this?

 μ unknown, $\sigma^2 = 1$



Which is more likely: (c) or this?

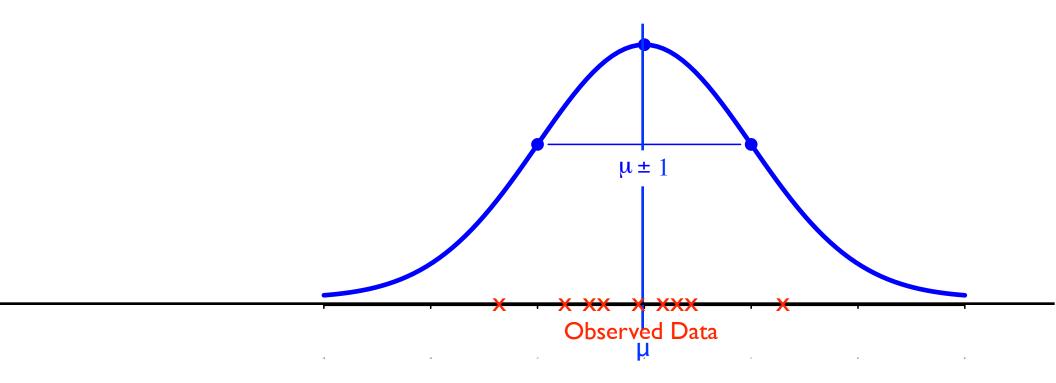
 μ unknown, $\sigma^2 = 1$



Which is more likely: (c) or this?

 μ unknown, $\sigma^2 = 1$

Looks good by eye, but how do I optimize my estimate of μ ?



Ex. 2:
$$x_i \sim N(\mu, \sigma^2), \ \sigma^2 = 1, \ \mu$$
 unknown
 $L(x_1, x_2, \dots, x_n | \theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-(x_i - \theta)^2/2}$
 $\ln L(x_1, x_2, \dots, x_n | \theta) = \sum_{i=1}^n -\frac{1}{2} \ln(2\pi) - \frac{(x_i - \theta)^2}{2}$
 $\frac{d}{d\theta} \ln L(x_1, x_2, \dots, x_n | \theta) = \sum_{i=1}^n (x_i - \theta)$
And verify it's max,
not min & not better
on boundary
 $\int_{\frac{1}{\theta}} \int_{\frac{1}{2}} \int$

Sample mean is MLE of population mean

Hmm ..., density ≠ probability

So why is "likelihood" function equal to product of *densities*?? (Prob of seeing any specific x_i is 0, right?)

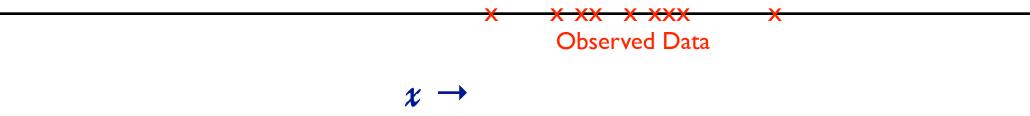
a) for maximizing likelihood, we really only care about *relative* likelihoods, and density captures that

b) has desired property that likelihood increases with better fit to the model

and/or

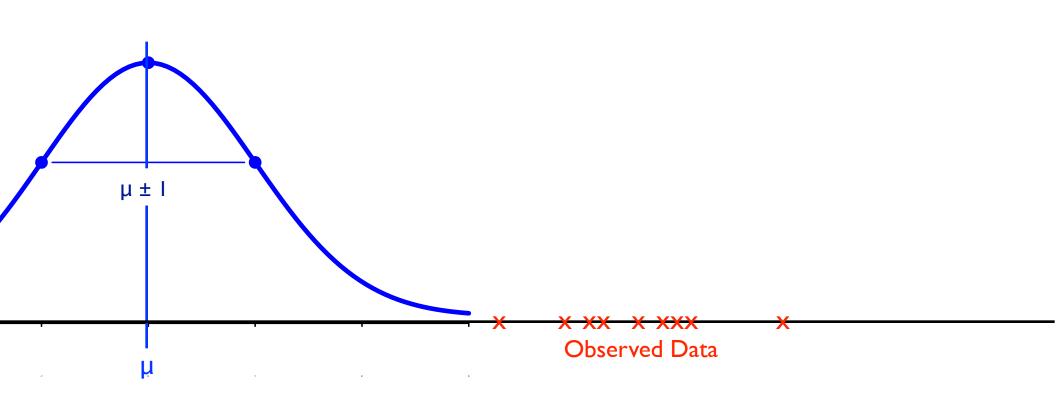
c) if density at x is f(x), for any small $\delta > 0$, the probability of a sample within $\pm \delta/2$ of x is $\approx \delta f(x)$, but δ is *constant* wrt θ , so it just drops out of $d/d\theta \log L(...) = 0$. u ± 1

Ex3: I got data; a little birdie tells me it's normal (but does *not* tell me μ , σ^2)



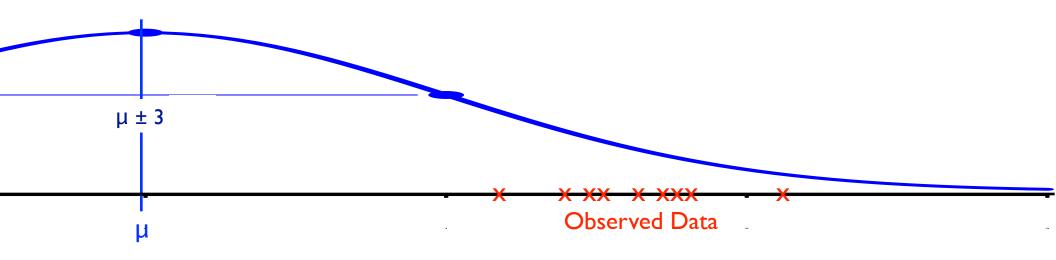
Which is more likely: (a) this?

 μ, σ^2 both unknown



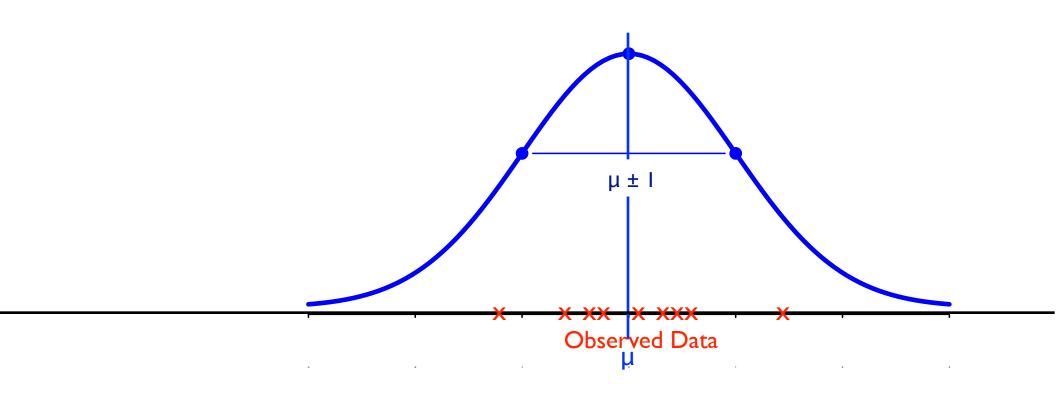
Which is more likely: (b) or this?

 μ, σ^2 both unknown



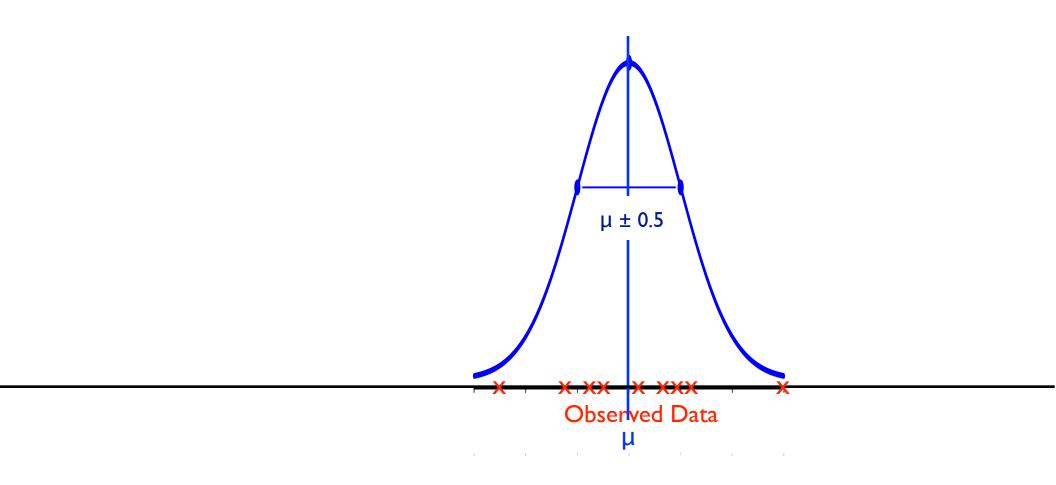
Which is more likely: (c) or this?

 μ, σ^2 both unknown



Which is more likely: (d) or this?

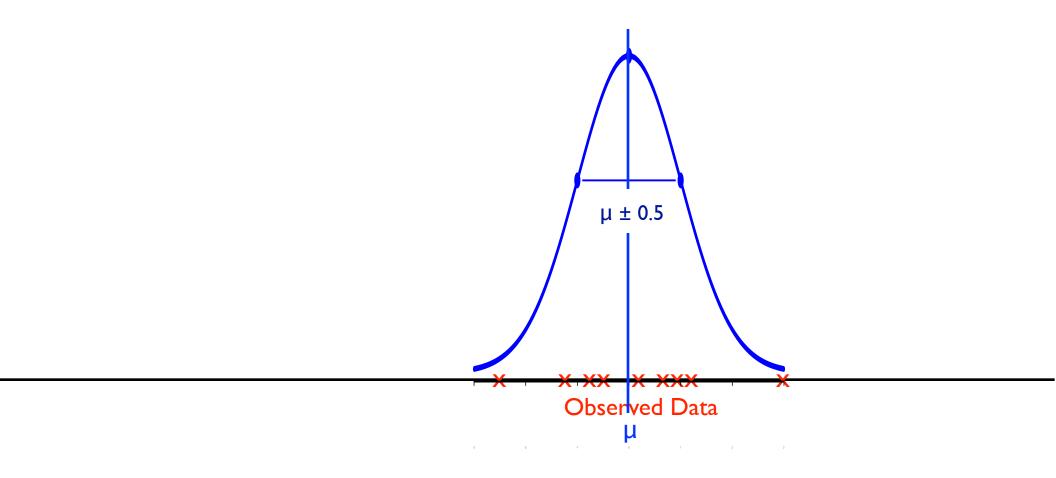
 $\mu,\sigma^2~$ both unknown



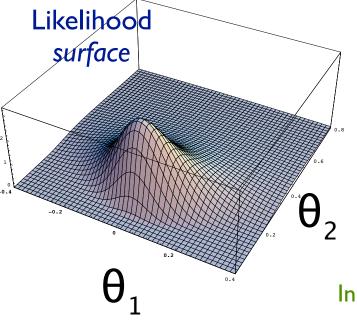
Which is more likely: (d) or this?

 μ, σ^2 both unknown

Looks good by eye, but how do I optimize my estimates of $\mu \& \sigma^2$?



Ex 3:
$$x_i \sim N(\mu, \sigma^2), \ \mu, \sigma^2$$
 both unknown



$$\widehat{Y}_1 = \left(\sum_{i=1}^n x_i\right)/n =$$

Sample mean is MLE of population mean, again

In general, a problem like this results in 2 equations in 2 unknowns. Easy in this case, since θ_2 drops out of the $\partial/\partial \theta_1 = 0$ equation 23

Ex. 3, (cont.)

$$\ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{i=1}^n -\frac{1}{2} \ln(2\pi\theta_2) - \frac{(x_i - \theta_1)^2}{2\theta_2}$$
$$\frac{\partial}{\partial \theta_2} \ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{i=1}^n -\frac{1}{2} \frac{2\pi}{2\pi\theta_2} + \frac{(x_i - \theta_1)^2}{2\theta_2^2} = 0$$
$$\widehat{\theta_2} = \left(\sum_{i=1}^n (x_i - \widehat{\theta_1})^2\right) / n = \overline{s}^2$$

Sample variance is MLE of population variance

Summary

MLE is one way to estimate parameters from data

You choose the *form* of the model (normal, binomial, ...)

Math chooses the value(s) of parameter(s)

Has the intuitively appealing property that the parameters maximize the *likelihood* of the observed data; basically just assumes your sample is "representative"

Of course, unusual samples will give bad estimates (estimate normal human heights from a sample of NBA stars?) but that is an unlikely event

Often, but not always, MLE has other desirable properties like being *unbiased*, or at least *consistent*