CSE 312 Autumn 2013

The Expectation-Maximization Algorithm (for aTwo-Component Gaussian Mixture)

A Hat Trick

Two slips of paper in a hat:
Pink: $\mu=3$, and
Blue: $\mu=7$.
You draw one, then (without revealing color or μ) reveal a single sample $X \sim \operatorname{Normal}\left(\right.$ mean $\mu, \sigma^{2}=1$).

You happen to draw $\mathrm{X}=6.001$.
Dr. D. says "your slip = 7." What is P (correct)?
What if X had been 4.9 ?

A Hat Trick

A Hat Trick

Posterior odds $=$ Bayes Factor \cdot Prior odds
$\frac{P(\mu=7 \mid X=6)}{P(\mu=3 \mid X=6)}=\frac{f(X=6 \mid \mu=7)}{f(X=6 \mid \mu=3)} \cdot \frac{0.50}{0.50}=\frac{0.2422}{0.0044} \cdot \frac{1}{1}=\frac{54.8}{1}$
I.e., 50:50 prior odds become 54:I in favor of $\mu=7$, given $X=6.00$ | (and would become 3:2 in favor of $\mu=3$, given $X=4.9$)

Another Hat Trick

Two secret numbers, $\mu_{\text {pink }}$ and $\mu_{\text {blue }}$
On pink slips, many samples of $\operatorname{Normal}\left(\mu_{\text {pink }}, \sigma 2=1\right)$,
Ditto on blue slips, from $\operatorname{Normal}\left(\mu_{\text {blue }}, \sigma 2=1\right)$.
Based on 16 of each, how would you "guess" the secrets (where "success" means your guess is within ± 0.5 of each secret)?
Roughly how likely is it that you will succeed?

Another Hat Trick (cont.)

Pink/blue $=$ red herrings; separate $\&$ independent
Given $X_{1}, \ldots, X_{16} \sim N\left(\mu, \sigma^{2}\right), \quad \sigma^{2}=1$
Calculate $Y=\left(X_{1}+\ldots+X_{16}\right) / 16 \sim N(?, ?)$
$\mathrm{E}[\mathrm{Y}]=\mu$
$\operatorname{Var}(\mathrm{Y})=16 \sigma^{2} / 16^{2}=\sigma^{2} / 16=1 / 16$
I.e., X 's are all $\sim N(\mu, I) ; Y$ is $\sim N(\mu, I / 16)$
and since $0.5=2 \operatorname{sqrt}(\mathrm{I} / \mathrm{I} 6)$, we have:
$" Y$ within $\pm .5$ of μ " $=" Y$ within $\pm 2 \sigma$ of $\mu " \approx 95 \%$ prob

Note I: Y is a point estimate for μ;
$Y \pm 2 \sigma$ is a 95% confidence interval for μ (More on this topic later)

Histogram of 1000 samples of the average of $16 \mathbf{N}(0,1)$ RVs Red $=\mathrm{N}(0, \mathrm{I} / \mathrm{I} 6)$ density

Hat Trick 2 (cont.)

Note 2:

What would you do if some of the slips you pulled had coffee spilled on them, obscuring color?

If they were half way between means of the others?
If they were on opposite sides of the means of the others

Previously: How to estimate μ given data

For this problem, we got a nice, closed form, solution, allowing calculation of the μ,
σ that maximize the likelihood of the observed data.

We're not always so lucky...

More Complex Example

This?

Or this?
(A modeling decision, not a math problem..., but if the later, what math?)

A Living Histogram

male and female genetics students, University of Connecticut in 1996
http://mindprod.com/igloss/histogram.html

Another Real Example:

CpG content of human gene promoters

"A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters" Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417

Gaussian Mixture Models / Model-based Clustering

Parameters θ
means
variances
mixing parameters τ_{1}
μ_{1}
μ_{2}
$\sigma_{1}^{2} \quad \sigma_{2}^{2}$
$\tau_{2}=1-\tau_{1}$
P.D.F. $\xrightarrow{\text { separately }} f\left(x \mid \mu_{1}, \sigma_{1}^{2}\right) \quad f\left(x \mid \mu_{2}, \sigma_{2}^{2}\right)$

Likelihood

$$
\tau_{1} f\left(x \mid \mu_{1}, \sigma_{1}^{2}\right)+\tau_{2} f\left(x \mid \mu_{2}, \sigma_{2}^{2}\right)
$$

$$
L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \tau_{1}, \tau_{2}\right)
$$

$$
=\prod_{i=1}^{n} \sum_{j=1}^{2} \tau_{j} f\left(x_{i} \mid \mu_{j}, \sigma_{j}^{2}\right)
$$

A What-If Puzzle

Likelihood

$$
\begin{aligned}
L\left(x_{1}, x_{2}, \ldots,\right. & x_{n} \mid \overbrace{\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \tau_{1}, \tau_{2}}) \\
& =\prod_{i=1}^{n} \sum_{j=1}^{2} \tau_{j} f\left(x_{i} \mid \mu_{j}, \sigma_{j}^{2}\right)
\end{aligned}
$$

Messy: no closed form solution known for finding θ maximizing L

But what if we knew the
hidden data?

$$
z_{i j}= \begin{cases}1 & \text { if } x_{i} \text { drawn from } f_{j} \\ 0 & \text { otherwise }\end{cases}
$$

EM as Egg vs Chicken

IF parameters θ known, could estimate z_{ij}
E.g., $\left|x_{i}-\mu_{1}\right| / \sigma_{1} \gg\left|x_{i}-\mu_{2}\right| / \sigma_{2} \Rightarrow P\left[z_{i l}=1\right]<P\left[z_{i 2}=1\right]$

IF z_{ij} known, could estimate parameters θ
E.g., only points in cluster 2 influence μ_{2}, σ_{2}

But we know neither; (optimistically) iterate:
E-step: calculate expected z_{i}, given parameters
M-step: calculate "MLE" of parameters, given $E\left(z_{i j}\right)$
Overall, a clever "hill-climbing" strategy

Simple Version: "Classification EM"

If $\mathrm{E}\left[\mathrm{z}_{\mathrm{i}}\right]$. 5 , pretend $\mathrm{z}_{\mathrm{ij}}=0$; $\mathrm{E}\left[\mathrm{z}_{\mathrm{i}}\right]>.5$, pretend it's I
I.e., classify points as component I or 2

Now recalc θ, assuming that partition (standard MLE)
Then recalc $\mathrm{E}\left[\mathrm{z}_{\mathrm{i}}\right]$, assuming that θ
Then re-recalc θ, assuming new $E\left[z_{i j}\right]$, etc., etc.
"K-means clustering," essentially
"Full EM" is slightly more involved, (to account for uncertainty in classification) but this is the crux.

Full EM

x_{i} 's are known; θ unknown. Goal is to find MLE θ of:

$$
L\left(x_{1}, \ldots, x_{n} \mid \theta\right)
$$

(hidden data likelihood)
Would be easy if $z_{i j}$'s were known, i.e., consider:

$$
L\left(x_{1}, \ldots, x_{n}, z_{11}, z_{12}, \ldots, z_{n 2} \mid \theta\right) \quad \text { (complete data likelihood) }
$$

But $z_{i j}$'s aren't known.
Instead, maximize expected likelihood of visible data

$$
E\left(L\left(x_{1}, \ldots, x_{n}, z_{11}, z_{12}, \ldots, z_{n 2} \mid \theta\right)\right)
$$

where expectation is over distribution of hidden data $\left(z_{i j}\right.$'s)

The E-step: Find $E\left(z_{i j}\right)$, ie., $P\left(z_{i j}=1\right)$

Assume θ known \& fixed
A (B): the event that x_{i} was drawn from $f_{l}\left(f_{2}\right)$
D: the observed datum x_{i}
Expected value of z_{il} is $\mathrm{P}(\mathrm{A} \mid \mathrm{D})$

$$
P(A \mid D)=\frac{P(D \mid A) P(A)}{P(D)}
$$

Repeat for

$$
P(D)=P(D \mid A) P(A)+P(D \mid B) P(B)
$$

each

$$
=f_{1}\left(x_{i} \mid \theta_{1}\right) \tau_{1}+f_{2}\left(x_{i} \mid \theta_{2}\right) \tau_{2}
$$ X_{i}

A Hat Trick

$$
\begin{aligned}
& \underset{\sim}{\bar{c}} \\
& \text { Let " } X \approx 6 \text { " be a shorthand for } 6.001-\delta / 2<X<6.001+\delta / 2 \\
& P(\mu=7 \mid X=6)=\lim _{\delta \rightarrow 0} P(\mu=7 \mid X \approx 6) \\
& P(\mu=7 \mid X \approx 6)=\frac{P(X \approx 6 \mid \mu=7) P(\mu=7)}{P(X \approx 6)} \\
& =\frac{0.5 P(X \approx 6 \mid \mu=7)}{0.5 P(X \approx 6 \mid \mu=3)+0.5 P(X \approx 6 \mid \mu=7)} \\
& \approx \frac{f(X=6 \mid \mu=7) \delta}{f(X=6 \mid \mu=3) \delta+f(X=6) \mid \mu=7) \delta}, \text { so } \\
& P(\mu=7 \mid X=6)=\frac{f(X=6 \mid \mu=7)}{f(X=6 \mid \mu=3)+f(X=6) \mid \mu=7)}
\end{aligned}
$$

Complete Data Likelihood

Recall:

$$
z_{1 j}= \begin{cases}1 & \text { if } x_{1} \text { drawn from } f_{j} \\ 0 & \text { otherwise }\end{cases}
$$

so, correspondingly,

$$
L\left(x_{1}, z_{1 j} \mid \theta\right)= \begin{cases}\tau_{1} f_{1}\left(x_{1} \mid \theta\right) & \text { if } z_{11}=1 \\ \tau_{2} f_{2}\left(x_{1} \mid \theta\right) & \text { otherwise }\end{cases}
$$

Formulas with "if's" are messy; can we blend more smoothly? Yes, many possibilities. Idea 1:

$$
L\left(x_{1}, z_{1 j} \mid \theta\right)=z_{11} \cdot \tau_{1} f_{1}\left(x_{1} \mid \theta\right)+z_{12} \cdot \tau_{2} f_{2}\left(x_{1} \mid \theta\right)
$$

Idea 2 (Better):

$$
L\left(x_{1}, z_{1 j} \mid \theta\right)=\left(\tau_{1} f_{1}\left(x_{1} \mid \theta\right)\right)^{z_{11}} \cdot\left(\tau_{2} f_{2}\left(x_{1} \mid \theta\right)\right)^{z_{12}}
$$

M-step:

Find θ maximizing $\mathrm{E}(\log ($ Likelihood $))$

(For simplicity, assume $\sigma_{1}=\sigma_{2}=\sigma ; \tau_{1}=\tau_{2}=\tau=0.5$)

$$
L(\vec{x}, \vec{z} \mid \theta)=\prod_{i=1}^{n} \frac{\tau}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\sum_{j=1}^{2} z_{i j} \frac{\left(x_{i}-\mu_{j}\right)^{2}}{2 \sigma^{2}}\right)
$$

$$
\begin{aligned}
E[\log L(\vec{x}, \vec{z} \mid \theta)] & =E\left[\sum_{i=1}^{n}\left(\log \tau-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\sum_{j=1}^{2} z_{i j} \frac{\left(x_{i}-\mu_{j}\right)^{2}}{2 \sigma^{2}}\right)\right] \\
\text { wrt dist of } z_{i j} & =\sum_{i=1}^{n}\left(\log \tau-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\sum_{j=1}^{2} E\left[z_{i j}\right] \frac{\left(x_{i}-\mu_{j}\right)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

Find θ maximizing this as before, using $E\left[z_{i j}\right]$ found in E-step. Result: $\mu_{j}=\sum_{i=1}^{n} E\left[z_{i j}\right] x_{i} / \sum_{i=1}^{n} E\left[z_{i j}\right]$ (intuit: avg, weighted by subpop prob)

Hat Trick 2 (cont.)

Note 2: red/blue separation is just like the M-step of EM if values of the hidden variables ($\mathbf{z}_{i j}$) were known. What if they're not? E.g., what would you do if some of the slips you pulled had coffee spilled on them, obscuring color?

If they were half way between means of the others? If they were on opposite sides of the means of the others

M-step:calculating mu's

$$
\mu_{j}=\sum_{i=1}^{n} E\left[z_{i j}\right] x_{i} / \sum_{i=1}^{n} E\left[z_{i j}\right]
$$

In words: μ_{j} is the average of the observed x_{i} 's, weighted by the probability that x_{i} was sampled from component j.

								row sum	avg
	$\mathrm{E}\left[\mathrm{z}_{\mathrm{i} 1}\right]$	0.99	0.98	0.7	0.2	0.03	0.01	2.91	
	$\mathrm{E}\left[\mathrm{zi}_{2}\right]$	0.01	0.02	0.3	0.8	0.97	0.99	3.09	
	X_{i}	9	10	11	19	20	21	90	15
	$\mathrm{E}\left[\mathrm{z}_{\mathrm{i} 1}\right] \mathrm{x}_{\mathrm{i}}$	8.9	9.8	7.7	3.8	0.6	0.2	31.0	10.66
	$\mathrm{E}\left[\mathrm{z}_{\mathrm{i}}\right] \mathrm{x}_{\mathrm{i}}$	0.1	0.2	3.3	15.2	19.4	20.8	59.0	19.09

2 Component Mixture

$$
\sigma_{1}=\sigma_{2}=1 ; \tau=0.5
$$

		mu1	-20.00		-6.00		-5.00		-4.99
		mu2	6.00		0.00		3.75		3.75
x1	-6	211		5.11E-12		$1.00 \mathrm{E}+00$		$1.00 \mathrm{E}+00$	
$\times 2$	-5	221		$2.61 \mathrm{E}-23$		$1.00 \mathrm{E}+00$		$1.00 \mathrm{E}+00$	
x3	-4	231		$1.33 \mathrm{E}-34$		$9.98 \mathrm{E}-01$		$1.00 \mathrm{E}+00$	
x4	0	241		$9.09 \mathrm{E}-80$		$1.52 \mathrm{E}-08$		$4.11 \mathrm{E}-03$	
x5	4	$\mathbf{2 5 1}$		$6.19 \mathrm{E}-125$		5.75E-19		2.64E-18	
x6	5	261		$3.16 \mathrm{E}-136$		1.43E-21		$4.20 \mathrm{E}-22$	
x7	6	271		$1.62 \mathrm{E}-147$		3.53E-24		6.69E-26	

Essentially converged in 2 iterations
(Excel spreadsheet on course web)

EM Summary

Fundamentally a maximum likelihood parameter estimation problem; broader than just Gaussian

Useful if $0 / I$ hidden data, and if analysis would be more tractable if hidden data z were known

Iterate:
E-step: estimate $E(z)$ for each z, given θ
M-step: estimate θ maximizing E[log likelihood]
given $E[z]$ [where "E[logL]" is wrt random $z \sim E[z]=p(z=1)]$

EM Issues

Under mild assumptions, EM is guaranteed to increase likelihood with every E-M iteration, hence will converge.
But it may converge to a local, not global, max. (Recall the 4-bump surface...)
Issue is intrinsic (probably), since EM is often applied to problems (including clustering, above) that are NP-hard (so fast alg is unlikely)
Nevertheless, widely used, often effective

Applications

Clustering is a remarkably successful exploratory data analysis tool

Web-search, information retrieval, gene-expression, ...
Model-based approach above is one of the leading ways to do it
Gaussian mixture models widely used
With many components, empirically match arbitrary distribution Often well-justified, due to "hidden parameters" driving the visible data
EM is extremely widely used for "hidden-data" problems Hidden Markov Models - speech recognition, DNA analysis, ...

A "Machine Learning" Example Handwritten Digit Recognition

Given: 10^{4} unlabeled, scanned images of handwritten digits, say 25×25 pixels,
Goal: automatically classify new examples Possible Method:

Each image is a point in \mathbb{R}^{625}; the "ideal" 7, say, is one such point; model other 7's as a Gaussian cloud around it
Do EM, as above, but 10 components in 625 dimensions instead of 2 components in 1 dimension
"Recognize" a new digit by best fit to those 10 models, i.e., basically max E-step probability

Machine Learning / Data Analytics Hot Topics Now. Why?

Advances in theoretical foundations Including probabilistic and statistical modeling

Advances in algorithms
Advances in computational power
Floods of data
Floods of applications
Science, engineering, medicine, security, commerce, ...

