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CSE 312 
Autumn 2013

The Expectation-Maximization Algorithm  
(for aTwo-Component Gaussian Mixture)



A Hat Trick
Two slips of paper in a hat: !

Pink: μ = 3, and !
Blue: μ = 7. !

You draw one, then (without revealing color or μ) 
reveal a single sample X ~ Normal(mean μ, σ2 = 1). !

You happen to draw X = 6.001. !

Dr. D. says “your slip = 7.” What is P(correct)?!

What if X had been 4.9?
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Let “X ⇡ 6” be a shorthand for 6.001� �/2 < X < 6.001 + �/2

P (µ = 7|X = 6) = lim

�!0
P (µ = 7|X ⇡ 6)

P (µ = 7|X ⇡ 6) =

P (X ⇡ 6|µ = 7)P (µ = 7)

P (X ⇡ 6)

=

0.5P (X ⇡ 6|µ = 7)

0.5P (X ⇡ 6|µ = 3) + 0.5P (X ⇡ 6|µ = 7)

⇡ f(X = 6|µ = 7)�

f(X = 6|µ = 3)� + f(X = 6)|µ = 7)�
, so

P (µ = 7|X = 6) =

f(X = 6|µ = 7)

f(X = 6|µ = 3) + f(X = 6)|µ = 7)

⇡ 0.982

f = normal  
density

3σ σ

Bayes rule
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f = normal  
density

3σ σ

Alternate View:

I.e.,  50:50 prior odds become 54:1 in favor of μ=7, given X=6.001	

(and would become 3:2 in favor of  μ=3, given X=4.9)

Posterior odds = Bayes Factor · Prior odds
P (µ = 7|X = 6)

P (µ = 3|X = 6)
=

f(X = 6|µ = 7)

f(X = 6|µ = 3)
· 0.50
0.50

=
0.2422

0.0044
· 1
1
=

54.8

1



Another Hat Trick
Two secret numbers, μpink and μblue	


On pink slips, many samples of Normal(μpink, σ2 = 1), 	


Ditto on blue slips, from Normal(μblue, σ2 = 1). 	


Based on 16 of each, how would you “guess” the 
secrets (where “success” means your guess is within 
±0.5 of each secret)? 	


Roughly how likely is it that you will succeed?	
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Another Hat Trick (cont.)

Pink/blue = red herrings; separate & independent	


Given X1, …, X16 ~ N(μ, σ2),    σ2 = 1	


Calculate Y = (X1 + … + X16)/16 ~ N( ? ,  ? )	


E[Y] = 	


Var(Y) = 	


I.e., Xi’s are all ~ N(μ, 1);   Y is ~ N(μ, 1/16)	


and since 0.5 = 2 sqrt(1/16), we have:	


“Y within ±.5 of μ” = “Y within ±2 σ of μ” ≈ 95% prob	


!

Note 1:  Y is a point estimate for μ;   
             Y ± 2 σ is a 95% confidence interval for μ  
               (More on this topic later)
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μ
 16σ2/162 = σ2/16 = 1/16



Histogram of 1000 samples of the average of 16 N(0,1) RVs
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Hat Trick 2 (cont.)

0 1 2 3 4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

A Hat Trick

x

de
ns
ity

X XX X

Note 2: 	


!

What would you do if some of the slips you pulled had 
coffee spilled on them, obscuring color?  	


If they were half way between means of the others?  
If they were on opposite sides of the means of the 
others



-3 -2 -1 0 1 2 3

µ ± σ

μ

1

Previously:  
How to estimate μ given data
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X          X  XX    X  XXX               X	


Observed Data

For this problem, we got a nice, closed 
form, solution, allowing calculation of the μ, 
σ that maximize the likelihood of the 

observed data.	

!

We’re not always so lucky...



!

This?	


!

Or this?	


!

(A modeling decision, not a math problem...,  
but if the later, what math?)
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More Complex Example



A Living Histogram
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Text

http://mindprod.com/jgloss/histogram.html

male and female genetics students, University of Connecticut in 1996



Another Real Example: 
CpG content of human gene promoters

“A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two 
distinct classes of promoters”  Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417

©2006 by National Academy of Sciences
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No 	

closed-	

form	

max

Parameters �

means µ1 µ2

variances ⇤2
1 ⇤2

2

mixing parameters ⌅1 ⌅2 = 1� ⌅1

P.D.F. f(x|µ1,⇤2
1) f(x|µ2,⇤2

2)

Likelihood

L(x1, x2, . . . , xn|µ1, µ2,⇤2
1 ,⇤2

2 , ⌅1, ⌅2)

=
⇥n

i=1

�2
j=1 ⌅jf(xi|µj ,⇤2

j )

Gaussian Mixture Models / Model-based Clustering

separately

together
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Messy: no closed form solution known for 
finding θ maximizing L	


But what if we  
knew the  
hidden data?

A What-If Puzzle
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EM as Egg vs Chicken
IF parameters θ known, could estimate zij 	


	
 E.g., |xi - µ1|/σ1 ≫ |xi - µ2|/σ2 ⇒ P[zi1=1] ≪ P[zi2=1]	


IF zij known, could estimate parameters θ 
 E.g., only points in cluster 2 influence µ2, σ2	


But we know neither; (optimistically) iterate: 	

	
 E-step: calculate expected zij, given parameters	


M-step: calculate “MLE” of parameters, given E(zij)	


Overall, a clever “hill-climbing” strategy 

Hat 
 

Tr
ick

 1

Hat 
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Hat 
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Simple Version: 
“Classification EM”

If E[zij] < .5, pretend zij = 0;  E[zij] > .5, pretend it’s 1	


I.e., classify points as component 1 or 2	


Now recalc θ, assuming that partition (standard MLE)	


Then recalc E[zij], assuming that θ	

Then re-recalc θ, assuming new E[zij],  etc., etc.   
“Full EM” is slightly more involved, (to account for 
uncertainty in classification) but this is the crux.

Not 
wha

t’s
 ne

ed
ed

 fo
r 
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mew
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 bu
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ay
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lp 
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ce
pt

s

“K-means 
clustering,” 
essentially
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Full EM
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The E-step:   
Find E(zij), i.e., P(zij=1)

Assume θ known & fixed	

A (B): the event that xi was drawn from f1 (f2)	

D: the observed datum xi	

Expected value of zi1 is P(A|D)

Repeat 	

for 	


each 	

xi}

E = 0 · P (0) + 1 · P (1)

Note: denominator = sum of numerators - i.e. that which normalizes sum to 1 (typical Bayes)
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Let “X ⇡ 6” be a shorthand for 6.001� �/2 < X < 6.001 + �/2

P (µ = 7|X = 6) = lim

�!0
P (µ = 7|X ⇡ 6)

P (µ = 7|X ⇡ 6) =

P (X ⇡ 6|µ = 7)P (µ = 7)

P (X ⇡ 6)

=

0.5P (X ⇡ 6|µ = 7)

0.5P (X ⇡ 6|µ = 3) + 0.5P (X ⇡ 6|µ = 7)

⇡ f(X = 6|µ = 7)�

f(X = 6|µ = 3)� + f(X = 6)|µ = 7)�
, so

P (µ = 7|X = 6) =

f(X = 6|µ = 7)

f(X = 6|µ = 3) + f(X = 6)|µ = 7)

⇡ 0.982

f = normal  
density

3σ σRec
all
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Complete Data 
Likelihood

(Better):

equal, if zij are 0/1
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M-step: 
Find θ maximizing E(log(Likelihood))

wrt  dist of zij
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Hat Trick 2 (cont.)
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Note 2: red/blue separation is just like the M-step of EM 
if values of the hidden variables (zij) were known.	


What if they’re not?  E.g., what would you do if some of 
the slips you pulled had coffee spilled on them, 
obscuring color?  	


If they were half way between means of the others?  
If they were on opposite sides of the means of the 
others

Rec
all



M-step:calculating mu’s

row sum avg

E[zi1] 0.99 0.98 0.7 0.2 0.03 0.01 2.91
E[zi2] 0.01 0.02 0.3 0.8 0.97 0.99 3.09

xi 9 10 11 19 20 21 90 15
E[zi1]xi 8.9 9.8 7.7 3.8 0.6 0.2 31.0 10.66
E[zi1]xi 0.1 0.2 3.3 15.2 19.4 20.8 59.0 19.09 ne

w
 μ

’s

ol
d 

E’
s

In words:  μj is the average of the observed xi’s, weighted by 
the probability that xi was sampled from component j.
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2 Component Mixture
σ1 = σ2 = 1;  τ = 0.5

Essentially converged in 2 iterations	

!

(Excel spreadsheet on course web)
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EM Summary

Fundamentally a maximum likelihood parameter 
estimation problem; broader than just Gaussian	


Useful if 0/1 hidden data, and if analysis would be 
more tractable if hidden data z were known	


Iterate: 	

E-step: estimate E(z) for each z, given θ	

M-step: estimate θ maximizing E[log likelihood]  
given E[z] [where “E[logL]” is wrt random z ~ E[z] = p(z=1)]

Ba
ye

s

MLE



���53

EM Issues
Under mild assumptions, EM is guaranteed to 
increase likelihood with every E-M iteration, 
hence will converge.	


But it may converge to a local, not global, max. 
(Recall the 4-bump surface...)	


Issue is intrinsic (probably), since EM is often 
applied to problems (including clustering, 
above) that are NP-hard (so fast alg is unlikely)	


Nevertheless, widely used, often effective



Applications
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Clustering is a remarkably successful exploratory data 
analysis tool	


Web-search, information retrieval, gene-expression, ...	


Model-based approach above is one of the leading ways to do it	


Gaussian mixture models widely used	

With many components, empirically match arbitrary distribution	


Often well-justified, due to “hidden parameters” driving the 
visible data	


EM is extremely widely used for “hidden-data” problems	

Hidden Markov Models – speech recognition, DNA analysis, ...



27!

Given: 104 unlabeled, scanned images of  
handwritten digits, say 25 x 25 pixels, 

Goal: automatically classify new examples	


Possible Method:  	


Each image is a point in ℝ625; the “ideal” 7, say, is one such 
point; model other 7’s as a Gaussian cloud around it	


Do EM, as above, but 10 components in 625 dimensions 
instead of 2 components in 1 dimension	


“Recognize” a new digit by best fit to those 10 models, i.e., 
basically max E-step probability	


A “Machine Learning” Example	

Handwritten Digit Recognition
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Machine Learning / Data Analytics	

Hot Topics Now.  Why?

Advances in theoretical foundations 	

Including probabilistic and statistical modeling	


Advances in algorithms	


Advances in computational power	


Floods of data	


Floods of applications	

Science, engineering, medicine, security, commerce, …
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