CSE 312 Autumn 2013

More on parameter estimation – Bias; and Confidence Intervals

Bias

P(HHTHH θ): Probability of HHTHH, given P(H) = θ:		80. –
θ	θ ⁴ (Ι-θ)	eta) 0.06 -
0.2	0.0013	P(HHTHH Theta)
0.5	0.0313	P(1
0.8	0.0819	°
0.95	0.0407	0.0 0.2 0.4 0.6 0.8 1.0 Theta

Example I

n coin flips, $x_1, x_2, ..., x_n$; n_0 tails, n_1 heads, $n_0 + n_1 = n$; θ = probability of heads 0.002 0.0015 0.001 $L(x_1, x_2, \dots, x_n \mid \theta) = (1 - \theta)^{n_0} \theta^{n_1}$ 0.0005 $\log L(x_1, x_2, \dots, x_n \mid \theta) = n_0 \log(1 - \theta) + n_1 \log \theta$ $\frac{\partial}{\partial \theta} \log L(x_1, x_2, \dots, x_n \mid \theta) = \frac{-n_0}{1 - \theta} + \frac{n_1}{\theta}$ Setting to zero and solving: Observed fraction of successes in sample is MLE of success $\underline{n_1}$ probability in *population*

(Also verify it's max, not min, & not better on boundary)

(un-) Bias

A desirable property: An estimator Y_n of a parameter θ is an *unbiased* estimator if $E[Y_n] = \theta$

For coin ex. above, MLE is unbiased: $Y_n = fraction of heads = (\Sigma_{1 \le i \le n} X_i)/n$,

 $(X_i = indicator for heads in ith trial) so$ $E[Y_n] = (\Sigma_{1 \le i \le n} E[X_i])/n = n \theta/n = \theta$

by linearity of expectation

Are all unbiased estimators equally good?

No!

E.g., "Ignore all but 1 st flip; if it was H, let $Y_n' = I$; else $Y_n' = 0$ "

Exercise: show this is unbiased

Exercise: if observed data has at least one H and at least one T, what is the likelihood of the data given the model with $\theta = Y_n$ '?

Ex. 3, (cont.)

Recall

$$\ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} -\frac{1}{2} \ln 2\pi \theta_2 - \frac{(x_i - \theta_1)^2}{2\theta_2}$$
$$\frac{\partial}{\partial \theta_2} \ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} -\frac{1}{2} \frac{2\pi}{2\pi \theta_2} + \frac{(x_i - \theta_1)^2}{2\theta_2^2} = 0$$
$$\hat{\theta}_2 = \left(\sum_{1 \le i \le n} (x_i - \hat{\theta}_1)^2 \right) / n = \bar{s}^2$$

Sample variance is MLE of population variance

Ex. 3, (cont.)

Bias? if $Y_n = (\Sigma_{1 \le i \le n} X_i)/n$ is the sample mean then $E[Y_n] = (\Sigma_{1 \le i \le n} E[X_i])/n = n \mu/n = \mu$

so the MLE is an *unbiased* estimator of population mean

Similarly, $(\Sigma_{1 \le i \le n} (X_i - \mu)^2)/n$ is an unbiased estimator of σ^2 .

Unfortunately, if μ is *unknown*, estimated from the same data, as above, $\hat{\theta}_2 = \sum_{1 \le i \le n} \frac{(x_i - \hat{\theta}_1)^2}{n}$ is a consistent, but biased estimate of population variance. (An example of overfitting.) Unbiased estimate (B&T p467):

$$\hat{\theta}_2' = \sum_{1 \le i \le n} \frac{(x_i - \hat{\theta}_1)^2}{n - 1}$$

Roughly, $\lim_{n\to\infty} =$ correct

One Moral: MLE is a great idea, but not a magic bullet

More on Bias of $\hat{\theta}_2$

Biased? Yes. Why? As an extreme, think about n = I. Then $\hat{\theta}_2 = 0$; probably an underestimate!

Also, consider n = 2. Then $\hat{\theta}_1$ is exactly between the two sample points, the position that exactly minimizes the expression for θ_2 . Any other choices for θ_1 , θ_2 make the likelihood of the observed data slightly *lower*. But it's actually pretty unlikely that two sample points would be chosen exactly equidistant from, and on opposite sides of the mean (p=0, in fact), so the MLE $\hat{\theta}_2$ systematically underestimates θ_2 , i.e. is biased.

(But not by much, & bias shrinks with sample size.)

Confidence Intervals

A Problem With Point Estimates

Reconsider: estimate the mean of a normal distribution.

Sample X_1, X_2, \ldots, X_n

Sample mean $Y_n = (\sum_{1 \le i \le n} X_i)/n$ is an unbiased estimator of the population mean.

But with probability 1, it's wrong!

Can we say anything about how wrong?

E.g., could I find a value Δ s.t. I'm 95% confident that the true mean is within $\pm \Delta$ of my estimate?

Confidence Intervals for a Normal Mean

Assume X_i 's are i.i.d. ~Normal(μ, σ^2)

Mean estimator $Y_n = (\sum_{1 \le i \le n} X_i)/n$ is a random variable; it has a distribution, a mean and a variance. Specifically,

$$Var(Y_n) = Var\left(\frac{\sum_{i=1}^n X_i}{n}\right) = \frac{1}{n^2} \sum_{i=1}^n Var(X_i) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

So, $Y_n \sim Normal(\mu, \sigma^2/n)$, $\therefore \frac{Y_n - \mu}{\sigma/\sqrt{n}} \sim Normal(0, 1)$

Confidence Intervals for a Normal Mean

 X_i 's are i.i.d. ~ Normal(μ, σ^2)

 $Y_n \sim \text{Normal}(\mu, \sigma^2/n) \quad \frac{Y_n - \mu}{\sigma/\sqrt{n}} \sim \text{Normal}(0, I)$

$$P\left(-z < \frac{Y_n - \mu}{\sigma/\sqrt{n}} < z\right) = 1 - 2\Phi(-z)$$

$$P\left(-z < \frac{\mu - Y_n}{\sigma/\sqrt{n}} < z\right) = 1 - 2\Phi(-z)$$

$$P\left(-z\sigma/\sqrt{n} < \mu - Y_n < z\sigma/\sqrt{n}\right) = 1 - 2\Phi(-z)$$

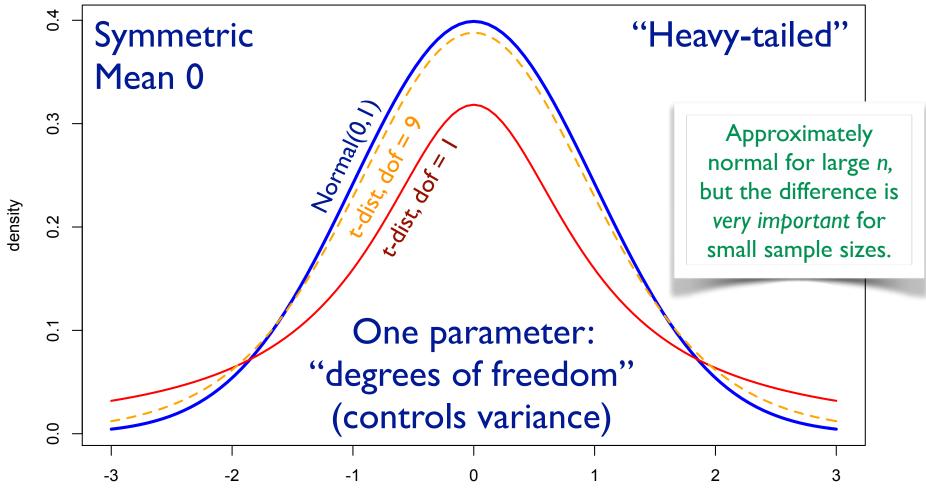
$$P\left(Y_n - z\sigma/\sqrt{n} < \mu < Y_n + z\sigma/\sqrt{n}\right) = 1 - 2\Phi(-z)$$
E.g., true μ within $\pm 1.96\sigma/\sqrt{n}$ of estimate ~ 95% of time
N.B: μ is fixed, not random; Y_n is random

C.I. of Norm Mean When σ^2 is Unknown?

$$\begin{split} X_i \text{'s are i.i.d. normal, mean} &= \mu, \text{variance} = \sigma^2 \text{ unknown} \\ Y_n &= (\Sigma_{1 \leq i \leq n} \; X_i)/n \text{ is normal} \\ (Y_n - \mu)/(\sigma / \sqrt{n}) \text{ is std normal, but we don't know } \mu, \sigma \\ \text{Let } S_n^2 &= \Sigma_{1 \leq i \leq n} \; (X_i - Y_n)^2 / (n - 1), \text{ the unbiased variance est} \\ (Y_n - \mu)/(S_n / \sqrt{n}) \text{ ?} \end{split}$$

Independent of μ , σ^2 , but NOT normal: "Students' t-distribution with n-I degrees of freedom"

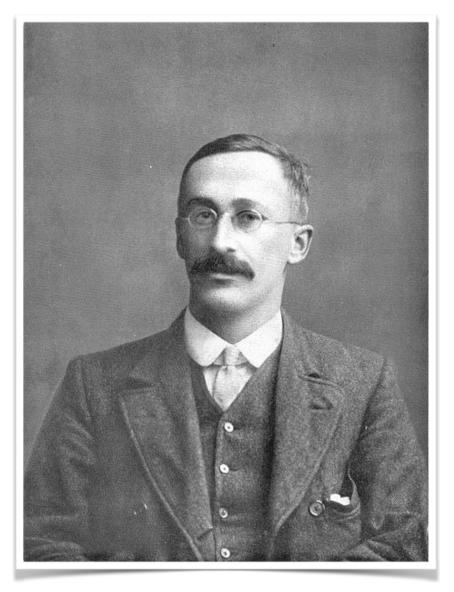
Student's t-distribution



William Gossett aka "Student"

Worked for A. Guinness & Son, investigating, e.g., brewing and barley yields. Guinness didn't allow him to publish under his own name, so this important work is tied to his pseudonym...

Student,"The probable error of a mean". Biometrika 1908.



June 13, 1876-October 16, 1937

Letting Ψ_{n-1} be the c.d.f. for the t-distribution with n-I degrees of freedom, as above we have:

$$\begin{split} P\left(-z < \frac{Y_n - \mu}{S_n/\sqrt{n}} < z\right) &= 1 - 2\Psi_{n-1}(-z) \\ P\left(-z < \frac{\mu - Y_n}{S_n/\sqrt{n}} < z\right) &= 1 - 2\Psi_{n-1}(-z) \\ P\left(-zS_n/\sqrt{n} < \mu - Y_n < zS_n/\sqrt{n}\right) &= 1 - 2\Psi_{n-1}(-z) \\ P\left(Y_n - zS_n/\sqrt{n} < \mu < Y_n + zS_n/\sqrt{n}\right) &= 1 - 2\Psi_{n-1}(-z) \\ \text{E.g., for n=10, 95\% interval, use z &\approx 2.26, \text{ vs } 1.96 \end{split}$$

What about non-normal

If $X_1, X_2, ..., X_n$ are *not* normal, you can still get approximate confidence intervals, based on the central limit theorem.

I.e., $Y_n = (\sum_{1 \le i \le n} X_i)/n$ is approximately normal with unknown mean and approximate variance $S_n^2 = \sum_{1 \le i \le n} (X_i - Y_n)^2/(n - 1)$, and

 $(Y_n - \mu)/(S_n/\sqrt{n})$ is approximately t-distributed, so

 $P(Y_n - zS_n/\sqrt{n} < \mu < Y_n + zS_n/\sqrt{n}) \approx 1 - 2\Psi_{n-1}(-z)$