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CSE 312 
Autumn 2013

More on parameter estimation –   
Bias; and Confidence Intervals



Bias
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Likelihood Function
P( HHTHH | θ ): 

Probability of HHTHH, 
given P(H) = θ:	


!
θ θ4(1-θ)
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(Also verify it’s max, not min, & not better on boundary)

Example 1
n coin flips, x1, x2, ..., xn;   n0 tails, n1 heads,  n0 + n1 = n;  

θ = probability of heads 
!

!

!

!

!

 

Observed fraction of 
successes in sample is 
MLE of success 
probability in population

dL/dθ = 0

Rec
all



(un-) Bias
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A desirable property:  An estimator Yn of a 
parameter θ is an unbiased estimator if  
       E[Yn]  = θ
For coin ex. above, MLE is unbiased:  
  Yn = fraction of heads = (Σ1≤i≤nXi)/n, 
(Xi = indicator for heads in ith trial) so
  E[Yn] = (Σ1≤i≤n E[Xi])/n = n θ/n = θ

by linearity of expectation



Are all unbiased estimators 
equally good?

No!  	


E.g.,  “Ignore all but 1st flip; if it was H,  let  
Yn’ = 1; else Yn’ = 0”	


Exercise: show this is unbiased	


Exercise: if observed data has at least one H 
and at least one T, what is the likelihood of 
the data given the model with θ = Yn’ ?
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Ex 3: xi � N(µ,⇥2), µ,⇥2 both unknown
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Sample mean is MLE of 
population mean, again

In general, a problem like this results in 2 equations in 2 unknowns.  
Easy in this case, since θ2 drops out of the ∂/∂θ1 = 0 equation

Likelihood 
surface

Rec
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Ex. 3, (cont.) 
lnL(x1, x2, . . . , xn|�1, �2) =

⌅

1�i�n

�1
2

ln 2⇥�2 �
(xi � �1)2

2�2

⇥
⇥�2

lnL(x1, x2, . . . , xn|�1, �2) =
⌅

1�i�n

�1
2

2⇥

2⇥�2
+

(xi � �1)2

2�2
2

= 0

�̂2 =
�⇤

1�i�n(xi � �̂1)2
⇥

/n = s̄2

Sample variance is MLE of 
population variance

Rec
all



Bias? if Yn = (Σ1≤i≤n Xi)/n  is the sample mean then	

    E[Yn] = (Σ1≤i≤n E[Xi])/n = n μ/n = μ	

so the MLE is an unbiased estimator of population mean	

!
Similarly, (Σ1≤i≤n (Xi-μ)2)/n is an unbiased estimator of σ2

.	

!
Unfortunately, if μ is unknown, estimated from the same data, as 
above,                                 is a consistent, but biased estimate 
of population variance.  (An example of overfitting.)   Unbiased 
estimate (B&T p467):	


!
!

One Moral: MLE is a great idea, but not a magic bullet
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Ex. 3, (cont.)

Roughly, 
limn→∞ = 
correct

known μ



Biased?  Yes.  Why?  As an extreme, think about n = 1.  
Then θ2 = 0; probably an underestimate!	


Also, consider n = 2.  Then θ1 is exactly between the 
two sample points, the position that exactly minimizes 
the expression for θ2.   Any other choices for θ1, θ2 
make the likelihood of the observed data slightly lower.  
But it’s actually pretty unlikely that two sample points 
would be chosen exactly equidistant from, and on 
opposite sides of the mean (p=0, in fact), so the MLE 
θ2 systematically underestimates θ2, i.e. is biased.	


(But not by much, & bias shrinks with sample size.)

More on Bias of θ2 
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ˆ

θ̂1

θ̂2

θ̂2



Confidence Intervals
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A Problem With Point Estimates

Reconsider: estimate the mean of a normal distribution.  	


Sample X1, X2, …, Xn	


Sample mean Yn = (Σ1≤i≤n Xi)/n is an unbiased estimator 
of the population mean.  	


But with probability 1, it’s wrong!	


Can we say anything about how wrong?	


E.g., could I find a value Δ s.t. I’m 95% confident that 
the true mean is within ±Δ of my estimate?
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Confidence Intervals for a Normal Mean

Assume Xi’s are i.i.d.  ~Normal(μ, σ2 )	


Mean estimator Yn = (Σ1≤i≤n Xi)/n  is a random variable; 
it has a distribution, a mean and a variance.  Specifically,	


    	


!

So,   Yn ~ Normal(μ, σ2 /n),  ∴            ~ Normal(0,1)
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Confidence Intervals for a Normal Mean

Xi’s are i.i.d. ~ Normal(μ, σ2 )	


 Yn ~ Normal(μ, σ2 /n)             ~ Normal(0,1)	


!

!

!

!

!

E.g., true μ within ±1.96σ/√n of estimate ~ 95% of time	


N.B:  μ is fixed, not random;  Yn is random ���70



C.I. of Norm Mean When σ2 is Unknown?

Xi’s are i.i.d. normal, mean = μ, variance = σ2 unknown	


Yn = (Σ1≤i≤n Xi)/n is normal	


(Yn - μ)/(σ /√n) is std normal, but we don’t know μ, σ	


Let Sn2 = Σ1≤i≤n (Xi-Yn)2/(n-1), the unbiased variance est	


(Yn - μ)/(Sn /√n) ?	


  Independent of μ,  σ2, but NOT normal:  
  “Students’ t-distribution with n-1 degrees of freedom”
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Symmetric                                     “Heavy-tailed”  
Mean 0

Student’s t-distribution
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One parameter:   
“degrees of freedom” 

(controls variance)

Approximately 
normal for large n, 

but the difference is 
very important for 
small sample sizes.



William Gossett	

aka 

“Student”

Worked for A. Guinness & Son, 
investigating, e.g., brewing and 
barley yields.  Guinness didn’t 
allow him to publish under his 
own name, so this important 

work is tied to his 
pseudonym…	


!
!
Student,"The probable error of a mean". Biometrika 1908. June 13, 1876–October 16, 1937



Letting        be the c.d.f. for the t-distribution 
with n-1 degrees of freedom, as above we have:
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E.g., for n=10, 95% interval, use z ≈ 2.26, vs 1.96



What about non-normal

If X1, X2, …, Xn are not normal, you can still get 
approximate confidence intervals, based on 
the central limit theorem.	


I.e., Yn = (Σ1≤i≤n Xi)/n is approximately normal with 
unknown mean and approximate variance  
Sn2 = Σ1≤i≤n (Xi-Yn)2/(n-1), and	


(Yn - μ)/(Sn /√n) is approximately t-distributed,  so
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