CSE 312
 Autumn 2013

More on parameter estimation Bias; and Confidence Intervals

Bias

Likelihood Function

P(HHTHH| θ): Probability of HHTHH, given $P(H)=\theta$:

θ	$\theta^{4}(\mathrm{I}-\theta)$
0.2	0.0013
0.5	0.0313
0.8	0.0819
0.95	0.0407

Example I

n coin flips, $x_{1}, x_{2}, \ldots, x_{n} ; n_{0}$ tails, n_{I} heads, $n_{0}+n_{I}=n$; $\theta=$ probability of heads
(2002

$$
\begin{aligned}
L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right) & =(1-\theta)^{n_{0}} \theta^{n_{1}} \\
\log L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right) & =n_{0} \log (1-\theta)+n_{1} \log \theta \\
\frac{\partial}{\partial \theta} \log L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right) & =\frac{-n_{0}}{1-\theta}+\frac{n_{1}}{\theta} \\
\text { Setting to zero and solving: } & \begin{array}{l}
\text { Observed fraction of } \\
\text { successes in sample is }
\end{array} \\
\qquad \begin{array}{ll}
\text { MLE of success } \\
\text { probability in population }
\end{array} & =\frac{n_{1}}{n}
\end{aligned}
$$

(Also verify it's max, not min, \& not better on boundary)

(un-) Bias

A desirable property: An estimator Y_{n} of a parameter θ is an unbiased estimator if

$$
\mathrm{E}\left[Y_{n}\right]=\theta
$$

For coin ex. above, MLE is unbiased: $Y_{n}=$ fraction of heads $=\left(\Sigma_{1 \leq i \leq n} X_{i}\right) / n$,
($\mathrm{X}_{\mathrm{i}}=$ indicator for heads in $\mathrm{i}^{\text {th }}$ trial) so

$$
E\left[Y_{n}\right]=\left(\Sigma_{1 \leq i \leq n} E\left[X_{i}\right]\right) / n=n \theta / n=\theta
$$

by linearity of expectation

Are all unbiased estimators equally good?

No!
E.g., "Ignore all but Ist flip; if it was H, let
$Y_{n}^{\prime}=I$; else $Y_{n}^{\prime}=0 \prime \prime$
Exercise: show this is unbiased
Exercise: if observed data has at least one H and at least one T, what is the likelihood of the data given the model with $\theta=\mathrm{Y}_{\mathrm{n}}$ '?

$x_{i} \sim N\left(\mu, \sigma^{2}\right), \mu, \sigma^{2}$ both unknown

$$
\begin{aligned}
\ln L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right) & =\sum_{1 \leq i \leq n}-\frac{1}{2} \ln 2 \pi \theta_{2}-\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}} \\
\frac{\partial}{\partial \theta_{1}} \ln L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right) & =\sum_{1 \leq i \leq n} \frac{\left(x_{i}-\theta_{1}\right)}{\theta_{2}}=0 \\
\begin{array}{l}
\text { Likelihood } \\
\text { surface }
\end{array} & \hat{\theta}_{1}
\end{aligned}
$$

Sample mean is MLE of population mean, again

In general, a problem like this results in 2 equations in 2 unknowns. Easy in this case, since θ_{2} drops out of the $\partial / \partial \theta_{1}=0$ equation 63

Ex. 3, (cont.)

$$
\begin{aligned}
\ln L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right) & =\sum_{1 \leq i \leq n}-\frac{1}{2} \ln 2 \pi \theta_{2}-\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}} \\
\frac{\partial}{\partial \theta_{2}} \ln L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right) & =\sum_{1 \leq i \leq n}-\frac{1}{2} \frac{2 \pi}{2 \pi \theta_{2}}+\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}^{2}}=0 \\
\hat{\theta}_{2} & =\left(\sum_{1 \leq i \leq n}\left(x_{i}-\hat{\theta}_{1}\right)^{2}\right) / n=\bar{s}^{2}
\end{aligned}
$$

Sample variance is MLE of population variance

Ex. 3, (cont.)

Bias? if $Y_{n}=\left(\sum_{1 \leq i \leq n} X_{i}\right) / n$ is the sample mean then

$$
E\left[Y_{n}\right]=\left(\sum_{1 \leq i \leq n} E\left[X_{i}\right] / n=n \mu / n=\mu\right.
$$

so the MLE is an unbiased estimator of population mean
Similarly, $\left(\sum_{1 \leq i \leq n}\left(X_{i}-\mu\right)^{2}\right) / n$ is an unbiased estimator of σ^{2}.
Unfortunately, if μ is unknown, estimated from the same data, as above, $\hat{\theta}_{2}=\sum_{1 \leq i \leq n} \frac{\left(x_{i}-\hat{\theta}_{1}\right)^{2}}{n}$ is a consistent, but biased estimate of population variance. (An example of overfitting.) Unbiased estimate (BET p467):

$$
\hat{\theta}_{2}^{\prime}=\sum_{1 \leq i \leq n} \frac{\left(x_{i}-\hat{\theta}_{1}\right)^{2}}{n-1}
$$

Roughly, $\lim _{n \rightarrow \infty}=$ correct

One Moral: MLE is a great idea, but not a magic bullet

More on Bias of $\hat{\theta}_{2}$

Biased? Yes. Why? As an extreme, think about $\mathrm{n}=1$. Then $\hat{\theta}_{2}=0$; probably an underestimate!

Also, consider $n=2$. Then $\hat{\theta}_{\text {I }}$ is exactly between the two sample points, the position that exactly minimizes the expression for θ_{2}. Any other choices for θ_{1}, θ_{2} make the likelihood of the observed data slightly lower. But it's actually pretty unlikely that two sample points would be chosen exactly equidistant from, and on opposite sides of the mean ($\mathrm{p}=0$, in fact), so the MLE $\hat{\theta}_{2}$ systematically underestimates θ_{2}, i.e. is biased.
(But not by much, \& bias shrinks with sample size.)

Confidence Intervals

A Problem With Point Estimates

Reconsider: estimate the mean of a normal distribution.
Sample $X_{1}, X_{2}, \ldots, X_{n}$
Sample mean $Y_{n}=\left(\Sigma_{1 \leq i \leq n} X_{i}\right) / n$ is an unbiased estimator of the population mean.

But with probability I, it's wrong!
Can we say anything about how wrong?
E.g., could I find a value Δ s.t. I'm 95% confident that the true mean is within $\pm \Delta$ of my estimate?

Confidence Intervals for a Normal Mean

Assume X_{i} 's are i.i.d. $\sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$
Mean estimator $Y_{n}=\left(\sum_{1 \leq i \leq n} X_{i}\right) / n$ is a random variable; it has a distribution, a mean and a variance. Specifically,
$\operatorname{Var}\left(Y_{n}\right)=\operatorname{Var}\left(\frac{\sum_{i=1}^{n} X_{i}}{n}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{n \sigma^{2}}{n^{2}}=\frac{\sigma^{2}}{n}$
So, $\mathrm{Y}_{\mathrm{n}} \sim \operatorname{Normal}\left(\mu, \sigma^{2} / \mathrm{n}\right), \therefore \frac{Y_{n}-\mu}{\sigma / \sqrt{n}} \sim \operatorname{Normal}(0, \mathrm{I})$

Confidence Intervals for a Normal Mean

X_{i} 's are i.i.d. $\sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
& Y_{n} \sim \operatorname{Normal}\left(\mu, \sigma^{2} / \mathrm{n}\right) \quad \frac{Y_{n}-\mu}{\sigma / \sqrt{n}} \sim \operatorname{Normal}(0, \mathrm{I}) \\
& P\left(-z<\frac{Y_{n}-\mu}{\sigma / \sqrt{n}}<z\right)=1-2 \Phi(-z) \\
& P\left(-z<\frac{\mu-Y_{n}}{\sigma / \sqrt{n}}<z\right)=1-2 \Phi(-z) \\
& P\left(-z \sigma / \sqrt{n}<\mu-Y_{n}<z \sigma / \sqrt{n}\right)=1-2 \Phi(-z) \\
& P\left(Y_{n}-z \sigma / \sqrt{n}<\mu<Y_{n}+z \sigma / \sqrt{n}\right)=1-2 \Phi(-z)
\end{aligned}
$$

E.g., true μ within $\pm 1.96 \sigma / \sqrt{ } n$ of estimate $\sim 95 \%$ of time
N.B: μ is fixed, not random; Y_{n} is random

C.I. of Norm Mean When σ^{2} is Unknown?

X_{i} 's are i.i.d. normal, mean $=\mu$, variance $=\sigma^{2}$ unknown
$Y_{n}=\left(\sum_{1 \leq i \leq n} X_{i}\right) / n$ is normal
$\left(Y_{n}-\mu\right) /(\sigma / \sqrt{ } n)$ is std normal, but we don't know μ, σ
Let $S_{n}{ }^{2}=\Sigma_{I \leq i \leq n}\left(X_{i}-Y_{n}\right)^{2} /(n-I)$, the unbiased variance est
$\left(Y_{n}-\mu\right) /\left(S_{n} / \sqrt{ } n\right)$?
Independent of μ, σ^{2}, but NOT normal:
"Students' t -distribution with n -I degrees of freedom"

Student's t-distribution

William Gossett aka
"Student"

Worked for A. Guinness \& Son, investigating, e.g., brewing and barley yields. Guinness didn't allow him to publish under his own name, so this important work is tied to his pseudonym...

Letting Ψ_{n-1} be the c.d.f. for the t-distribution with n-I degrees of freedom, as above we have:

$$
\begin{aligned}
P\left(-z<\frac{Y_{n}-\mu}{S_{n} / \sqrt{n}}<z\right) & =1-2 \Psi_{n-1}(-z) \\
P\left(-z<\frac{\mu-Y_{n}}{S_{n} / \sqrt{n}}<z\right) & =1-2 \Psi_{n-1}(-z) \\
P\left(-z S_{n} / \sqrt{n}<\mu-Y_{n}<z S_{n} / \sqrt{n}\right) & =1-2 \Psi_{n-1}(-z) \\
P\left(Y_{n}-z S_{n} / \sqrt{n}<\mu<Y_{n}+z S_{n} / \sqrt{n}\right) & =1-2 \Psi_{n-1}(-z) \\
\text { E.g., for } \mathrm{n}=10,95 \% \text { interval, use } \mathrm{z} & \approx 2.26, \text { vs } \mathrm{I} .96
\end{aligned}
$$

What about non-normal

If $X_{1}, X_{2}, \ldots, X_{n}$ are not normal, you can still get approximate confidence intervals, based on the central limit theorem.
I.e., $Y_{n}=\left(\sum_{1 \leq i \leq n} X_{i}\right) / n$ is approximately normal with unknown mean and approximate variance

$$
S_{n}{ }^{2}=\Sigma_{I \leq i \leq n}\left(X_{i}-Y_{n}\right)^{2} /(n-I) \text {, and }
$$

$\left(Y_{n}-\mu\right) /\left(S_{n} / \sqrt{ } n\right)$ is approximately t-distributed, so $P\left(Y_{n}-z S_{n} / \sqrt{n}<\mu<Y_{n}+z S_{n} / \sqrt{n}\right) \approx 1-2 \Psi_{n-1}(-z)$

