Midterm Review

coverage

everything in text chapters 1-2, slides \& homework pre-exam (except "continuous random variables," possibly started today) is included, except as noted below.

mechanics

closed book; 1 page of notes ($8.5 \times 11, \leq 2$ sides, handwritten)

I'm more interested in setup and method than in numerical answers, so concentrate on giving a clear approach, perhaps including a terse English outline of your reasoning.
Corollary: calculators are probably irrelevant, but bring one to the exam if you want, just in case.
counting principle (product rule)
permutations
combinations
indistinguishable objects
binomial coefficients
binomial theorem

partitions \& multinomial coefficients

inclusion/exclusion
pigeon hole principle

chapter 1: axioms of probability

sample spaces \& events
axioms
complements, Venn diagrams, deMorgan, mutually exclusive events, etc.
equally likely outcomes

chapter 1: conditional probability and independence

conditional probability
chain rule, aka multiplication rule
total probability theorem
Bayes rule yes, learn the formula
odds (and prior/posterior odds form of Bayes rule)
independence
conditional independence
gambler's ruin
discrete random variables
probability mass function (pmf)
expectation of X
expectation of $g(X)$ (i.e., a function of an r.v.)
linearity: expectation of $\mathrm{X}+\mathrm{Y}$ and $\mathrm{aX}+\mathrm{b}$
variance
cumulative distribution function (cdf)
cdf as sum of pmf from - $-\infty$
independence; joint and marginal distributions
important examples:
know pmf, mean, variance of these
bernoulli, binomial, poisson, geometric, uniform

some important (discrete) distributions

Name	$P M F$	$E[k]$	$E\left[k^{2}\right]$	σ^{2}
Uniform (a, b)	$f(k)=\frac{1}{(b-a+1)}, k=a, a+1, \ldots, b$	$\frac{a+b}{2}$	$\frac{(b-a+1)^{2}-1}{12}$	
Bernoulli (p)	$f(k)=\left\{\begin{array}{lll}1-p & \text { if } k=0 \\ p & \text { if } k=1 & p\end{array}\right.$	p	$p(1-p)$	
Binomial (p, n)	$f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1, \ldots, n$	$n p$	$n p(1-p)$	

See also the summary in B\&T following pg 528

Calculus is a prereq, but l'd suggest the most important parts to brush up on are:
taylor's series for e^{x}
sum of geometric series: $\Sigma_{i \geq 0} x^{i}=1 /(1-x)(0 \leq x<1)$
Tip: multiply both sides by ($1-\mathrm{x}$)
$\sum_{i \geq 1} i x^{i-1}=1 /(1-x)^{2}$
Tip1: slide numbered 34 in "random variables" lecture notes, or text
Tip2: if it were $\sum_{i \geq 1} \mathrm{ix}^{i+1}$, say, you could convert to the above form by dividing by x^{2} etc.; 1st few terms may be exceptions
integrals \& derivatives of polynomials, e^{x}; chain rule for derivatives; integration by parts

Good Luck!

