CSE 312 Foundations of Computing II

Lecture 11: Variance and independence of R.V.s

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

Recap Linearity of Expectation

Theorem. For any two random variables *X* and *Y* (*X*, *Y* do not need to be independent)

 $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y).$

Theorem. For any random variables X_1, \ldots, X_n , and real numbers $a_1, \ldots, a_n \in \mathbb{R}$,

 $\mathbb{E}(a_1X_1 + \dots + a_nX_n) = a_1\mathbb{E}(X_1) + \dots + a_n\mathbb{E}(X_n).$

For any event A, can define the indicator random variable X for A $X = \begin{cases} 1 & if event A occurs \\ 0 & if event A does not occur \end{cases}$

$$\mathbb{P}(X = 1) = \mathbb{P}(A)$$
$$\mathbb{P}(X = 0) = 1 - \mathbb{P}(A)$$

Recap Linearity is special!

In general $\mathbb{E}(g(X)) \neq g(\mathbb{E}(X))$ E.g., $X = \begin{cases} 1 \text{ with prob } 1/2 \\ -1 \text{ with prob } 1/2 \end{cases}$

 $\circ \quad \mathbb{E}(X^2) \neq \mathbb{E}(X)^2$

How DO we compute $\mathbb{E}(g(X))$?

Recap Expectation of g(X)

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value of the random variable g(X) is $\mathbf{E}[g(X)] = \sum g(X(\omega)) \cdot \Pr(\omega)$ or equivalently $g(x) \cdot \Pr(X = x)$ E[g(X)] =x Pr(X=x)E(4

 $F(g(X)) = \sum_{x \in \mathcal{N}_{v}} g(x) \operatorname{Pr}(X=x)$

Example: Expectation of g(X)

Suppose we rolled a fair, 6-sided die in a game. You will win the cube of the number rolled dollars, times 10. Let X be the result of the dice roll. What is your expected winnings? $\chi = 10 x^3$

$E[10X^3] =$	$\sum_{j=1}^{6} g(j) P(\lambda = j)$
-105	.3 J

Agenda

- Variance **4**
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Two Games

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

$$W_1 = \text{payoff in a round of Game 1}$$

 $\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$

$$E(W_1) = \frac{1}{3} + \frac{1}{3}(-1)$$

= 0

Two Games

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

 W_1 = payoff in a round of Game 1 $\mathbb{P}(W_1 = 2) = \frac{1}{3}$, $\mathbb{P}(W_1 = -1) = \frac{2}{3}$

Game 2: In every round, you win \$10 with probability 1/3, lose \$5 with probability 2/3.

 W_2 = payoff in a round of Game 2 $\mathbb{P}(W_2 = 10) = \frac{1}{3}$, $\mathbb{P}(W_2 = -5) = \frac{2}{3}$ Which game would you <u>rather play</u>?

$$F(w_a) = 10.3 + (-5)^{2}$$

= 0

E(w)=0

Two Games

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

 W_1 = payoff in a round of Game 1 $\mathbb{P}(W_1 = 2) = \frac{1}{3}$, $\mathbb{P}(W_1 = -1) = \frac{2}{3}$

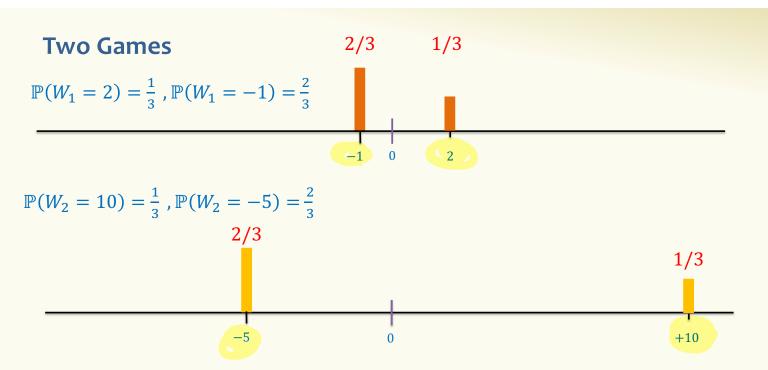
Game 2: In every round, you win \$10 with probability 1/3, lose \$5 with probability 2/3.

 W_2 = payoff in a round of Game 2 $\mathbb{P}(W_2 = 10) = \frac{1}{3}$, $\mathbb{P}(W_2 = -5) = \frac{2}{3}$ Which game would you <u>rather play</u>?

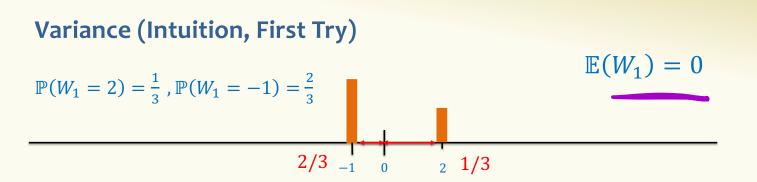
 $\mathbb{E}(W_2)=0$

 $\mathbb{E}(W_1) = 0$

Somehow, Game 2 has higher volatility / exposure!



Same expectation, but clearly very different distribution. We want to capture the difference – New concept: Variance



New quantity (random variable): How far from the expectation?

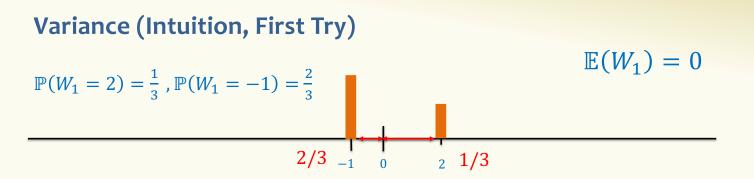
$$\Delta(W_{1}) = W_{1} - E[W_{1}] \qquad E\left(\Delta(\omega_{1})\right)$$

$$= E\left(\omega_{1} - E(\omega_{1})\right)$$

$$= E\left(\omega_{1}\right) - E\left(E(\omega_{1})\right)$$

$$= E\left(\omega_{1}\right) - E\left(E(\omega_{1})\right) = 0$$

$$= E\left(\omega_{1}\right) - E\left(\omega_{1}\right) = 0$$



New quantity (random variable): How far from the expectation?

 $\Delta(W_1) = W_1 - E[W_1] \qquad E[\Delta($

$$F[\Delta(W_1)] = E[W_1 - E[W_1]]$$

= $E[W_1] - E[E[W_1]]$
= $E[W_1] - E[W_1]$
= 0

Variance (Intuition, Better Try)

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$$

$$\mathbb{E}(W_1) = 0$$

$$\frac{2/3}{-1} = 0$$

A better quantity (random variable): How far from the expectation?

$$\Delta'(W_{1}) = (W_{1} - E[W_{1}])^{2}$$

$$E[\Delta'(W_{1})] = E[(W_{1} - E[W_{1}])^{2}]$$

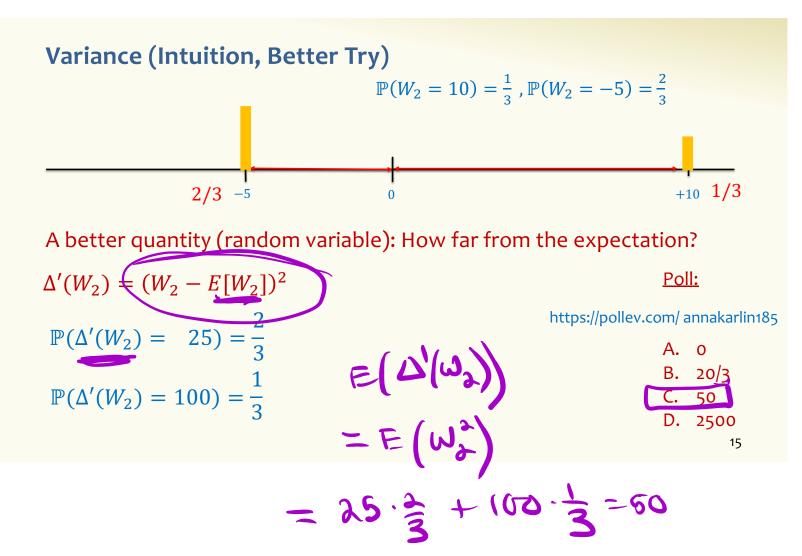
$$= H \cdot \frac{1}{3} + I \cdot \frac{2}{3} = -2$$

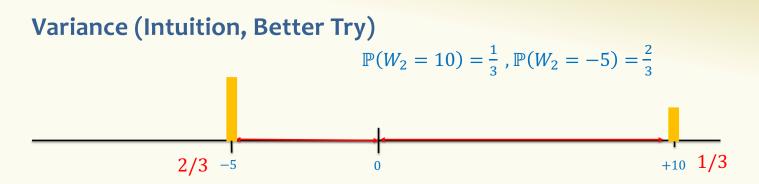
$$F[L] = E[(W_{1} - E[W_{1}])^{2}]$$

Variance (Intuition, Better Try)

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$$
 $\mathbb{E}(W_1) = 0$
 $2/3 - 1 \quad 0 \quad 2 \quad 1/3$

A better quantity (random variable): How far from the expectation? $\Delta'(W_1) = (W_1 - E[W_1])^2$ $\mathbb{P}(\Delta'(W_1) = 1) = \frac{2}{3}$ $\mathbb{P}(\Delta'(W_1) = 4) = \frac{1}{3}$ $E[\Delta'(W_1)] = E[(W_1 - E[W_1])^2]$ $= \frac{2}{3} \cdot 1 + \frac{1}{3} \cdot 4$ = 2

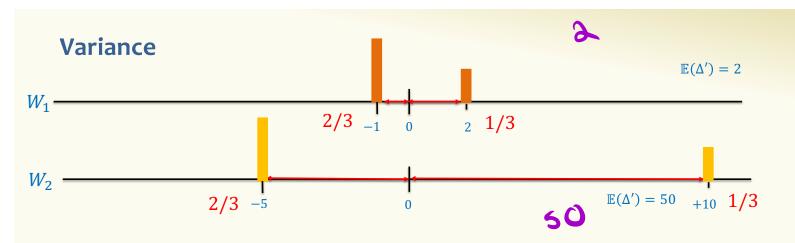




A better quantity (random variable): How far from the expectation?

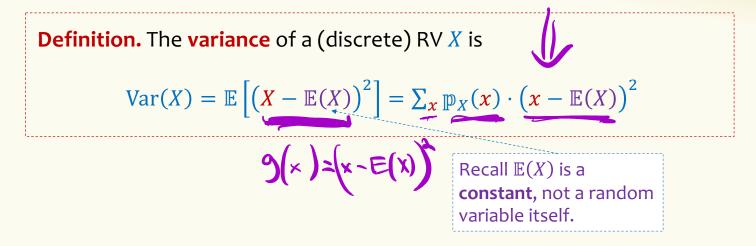
 $\Delta'(W_2) = (W_2 - E[W_2])^2$ $\mathbb{P}(\Delta'(W_2) = 25) = \frac{2}{3}$ $\mathbb{P}(\Delta'(W_2) = 100) = \frac{1}{3}$

$$E[\Delta'(W_2)] = E[(W_2 - E[W_2])^2]$$
$$= \frac{2}{3} \cdot 25 + \frac{1}{3} \cdot 100$$
$$= 50$$

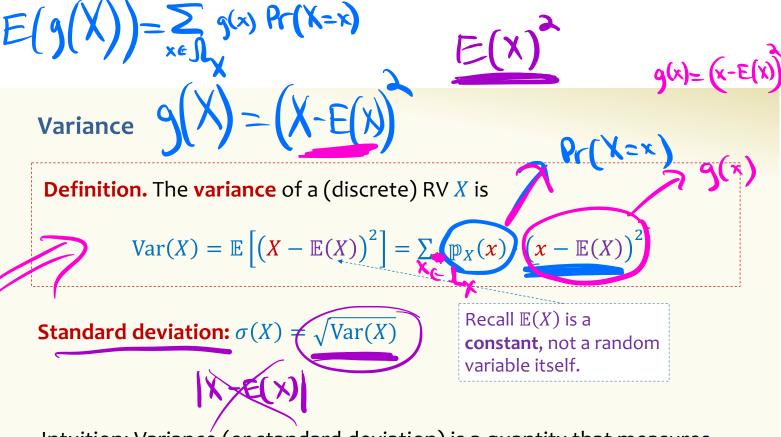


We say that W_2 has "higher variance" than W_1 .

Variance



<u>Intuition:</u> Variance is a quantity that measures, in expectation, how "far" the random variable is from its expectation.



<u>Intuition</u>: Variance (or standard deviation) is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance – Example 1

X fair die • $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$ • $\mathbb{E}(X) = 3.5$ Var(X) =? $\mathbb{E}\left(\left(X - \mathbb{E}(x)\right)\right)$ = 2(3-3.5) + 2(3-5

Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}(X) = 3.5$

 $\operatorname{Var}(X) = \sum_{x} \mathbb{P}(X = x) \cdot (x - \mathbb{E}(X))^{2}$

$$= \frac{1}{6} \left[(1 - 3.5)^2 + (2 - 3.5)^2 + (3 - 3.5)^2 + (4 - 3.5)^2 + (5 - 3.5)^2 + (6 - 3.5)^2 \right]$$

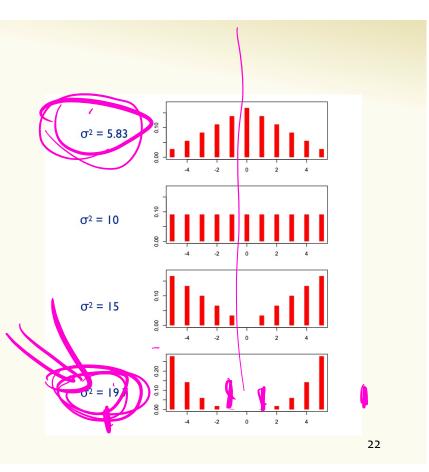
$$= \frac{2}{6} [2.5^2 + 1.5^2 + 0.5^2] = \frac{2}{6} \left[\frac{25}{4} + \frac{9}{4} + \frac{1}{4} \right] = \frac{35}{12} \approx 2.91677 \dots$$

Variance in Pictures

Captures how much "spread' there is in a pmf

All pmfs in picture have same expectation

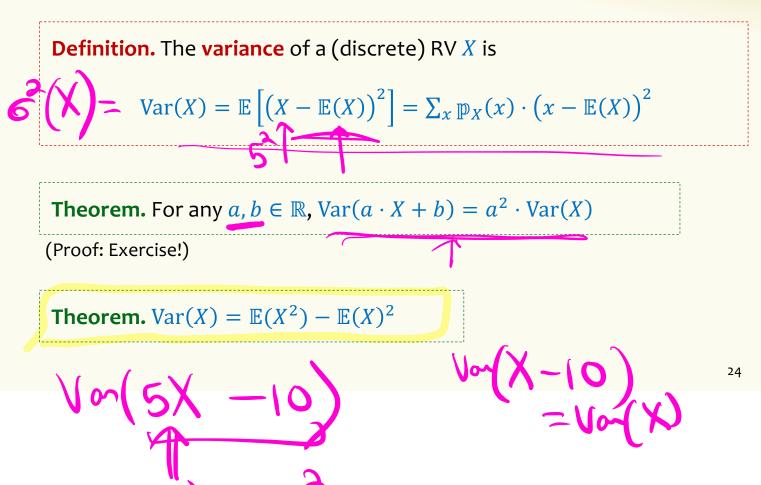
V

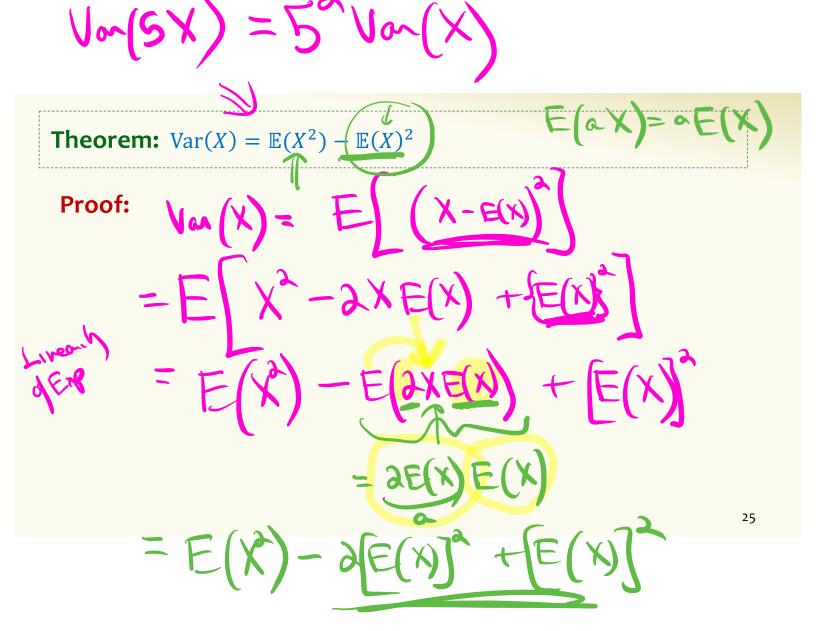


Agenda

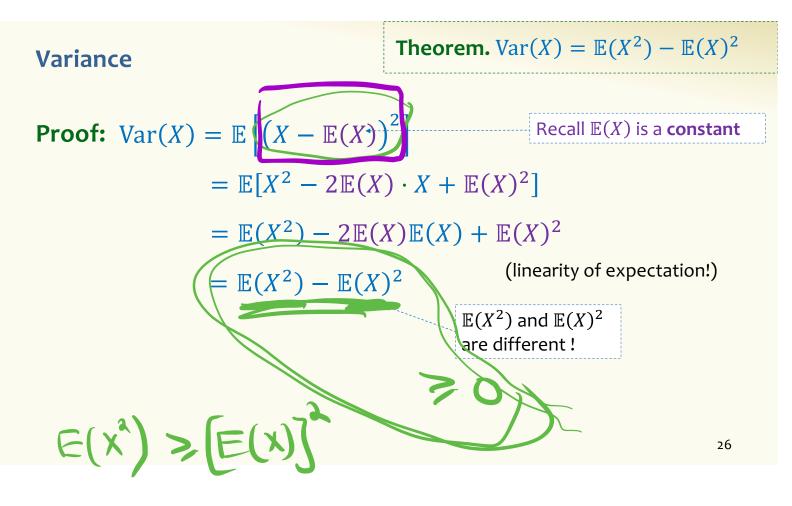
- Variance
- Properties of Variance (
- Independent Random Variables
- Properties of Independent Random Variables

Variance – Properties





 $Y = (X - E(X))^{2}$



Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}(X) = \frac{21}{6}$
- $\mathbb{E}(X^2) = \frac{91}{6}$

Var(X) =
$$\mathbb{E}(X^2) - \mathbb{E}(X)^2 = \frac{91}{6} - \left(\frac{21}{6}\right)^2 = \frac{105}{36} \approx 2.91677$$

Example to show this:

• Let X be a r.v. with pmf $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$ – What is $\mathbb{E}[X]$ and Var(X)? $\mathbb{E}(X) = 1 + \frac{1}{2} + (-1) + \frac{1}{2} = 0$ $\bigvee o_{-}(X) = \mathbb{E}(X^{2}) - (\mathbb{E}(X))^{2} = 1$

Example to show this:

• Let *X* be a r.v. with pmf $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$ - $\mathbb{E}[X] = 0$ and Var(X) = 1

E(Y) = 0

• Let Y = -X- What is E[Y] and Var(Y)?

Example to show this:

- Let *X* be a r.v. with pmf $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$ -E[X] = 0 and Var(X) = 1Va(aX)=2Uo(X)
- Let Y = -X

-E[Y] = 0 and Var(Y) = 1

What is Var(X + Y)? = Von(X + (-X)) = -0= Von(X) + Von(Y)= 130

Vn(X+X) = Vn(ax) = a Vn=4 Vn

Example to show this:

- Let X be a r.v. with pmf $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$ - $\mathbb{E}[X] = 0$ and Var(X) = 1
- Let Y = -X

-E[Y] = 0 and Var(Y) = 1

What is Var(X + X)?

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Random Variables and Independence

Definition. Two random variables *X*, *Y* are **(mutually) independent** if for all *x*, *y*,

$$\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x) \cdot \mathbb{P}(Y = y)$$

Intuition: Knowing X doesn't help you guess Y and vice versa

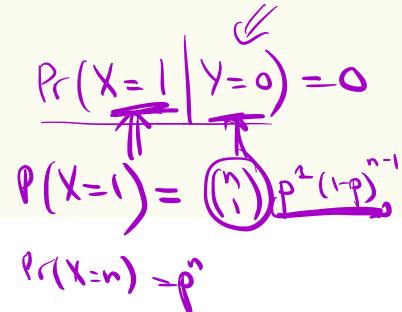
Definition. The random variables $X_1, ..., X_n$ are **(mutually) independent** if for all $x_1, ..., x_n$,

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \mathbb{P}(X_1 = x_1) \cdots \mathbb{P}(X_n = x_n)$$

Example

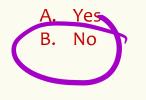
Let X be the number of heads in *n* independent coin flips of the same coin with probability *p* of coming up Heads. Let $Y = X \mod 2$ be the parity (even/odd) of X.

Are X and Y independent?



<u>Poll:</u>

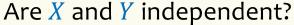
https://pollev.com/ annakarlin185

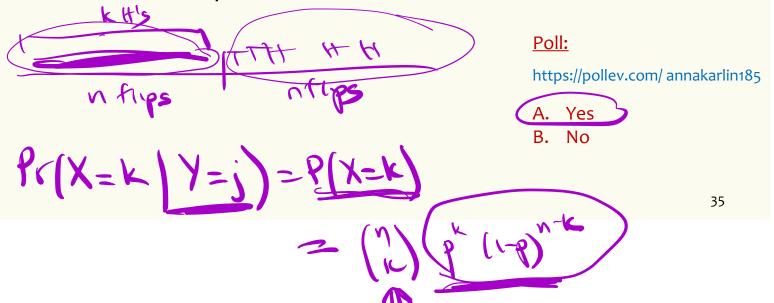


•

Example

Make 2n independent coin flips of the same coin. Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips.

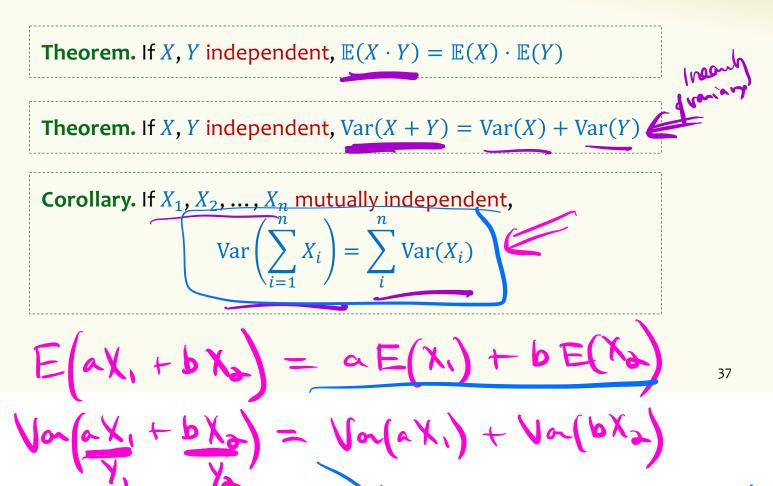




Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Important Facts about Independent Random Variables



Vor(aX)= a Vor(X)

= a2 Vor(X.) ~ 62(Va(X2)

Independent Random Variables are nice!

Theorem. If *X*, *Y* independent, $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$

Proof

Let
$$x_i, y_i, i = 1, 2, ...$$
 be the possible values of X, Y .
 $E[X \cdot Y] = \sum_i \sum_j x_i \cdot y_j \cdot P(X = x_i \land Y = y_j)$ independence
 $= \sum_i \sum_j x_i \cdot y_j \cdot P(X = x_i) \cdot P(Y = y_j)$
 $= \sum_i x_i \cdot P(X = x_i) \cdot \left(\sum_j y_j \cdot P(Y = y_j)\right)$
 $= E[X] \cdot E[Y]$

Note: *NOT* true in general; see earlier example $E[X^2] \neq E[X]^2$

(Not Covered) Proof of Var(X + Y) = Var(X) + Var(Y)

Theorem. If *X*, *Y* independent, Var(X + Y) = Var(X) + Var(Y)

Proof

$$Var[X + Y]$$

$$= E[(X + Y)^{2}] - (E[X + Y])^{2}$$

$$= E[X^{2} + 2XY + Y^{2}] - (E[X] + E[Y])^{2}$$

$$= E[X^{2}] + 2E[XY] + E[Y^{2}] - ((E[X])^{2} + 2E[X]E[Y] + (E[Y])^{2})$$

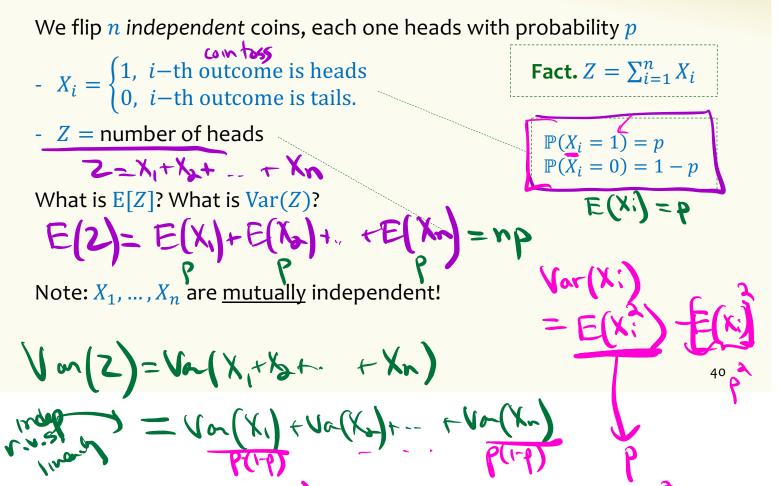
$$= E[X^{2}] - (E[X])^{2} + E[Y^{2}] - (E[Y])^{2} + 2(E[XY] - E[X]E[Y])$$

$$= Var[X] + Var[Y] + 2(E[X]E[Y] - E[X]E[Y])$$

$$= Var[X] + Var[Y]$$

$$39$$

Example – Coin Tosses



Example – Coin Tosses

We flip n independent coins, each one heads with probability p

- $X_i = \begin{cases} 1, i-\text{th outcome is heads} \\ 0, i-\text{th outcome is tails.} \end{cases}$ Fact. $Z = \sum_{i=1}^{n} X_i$ - Z = number of heads $\mathbb{P}(X_i = 1) = p$ $\mathbb{P}(X_i=0)=1-p$ What is E[Z]? What is Var(Z)? $\mathbb{P}(Z=k) = \binom{n}{k} p^k (1-p)^{n-k}$ Note: X_1 , ..., X_n are <u>mutually</u> independent! $Var(Z) = \sum_{i=1}^{n} Var(X_i) = n \cdot p(1-p)$ Note $Var(X_i) = p(1-p)$ 41