CSE 312
 Foundations of Computing II

Lecture 4: Intro to discrete probability

W

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Plus few slides from Berkeley $\mathrm{CS}_{1} 70$

Probability

- We want to model uncertainty.
- i.e., outcome not determined a-priori
- E.g. throwing dice, flipping a coin...
- We want to numerically measure likelihood of outcomes = probability.
- We want to make complex statements about these likelihoods.
- We will not argue why a certain physical process realizes the probabilistic model we study
- Why is the outcome of the coin flip really "random"?
- First part of class: "Discrete" probability theory
- Experiment with finite / discrete set of outcomes.
- Will explore countably infinite and continuous outcomes later

Agenda

- Events
- Probability
- Equally Likely Outcomes
- Probability Axioms and Beyond Equally Likely Outcomes
- More Examples

Sample Space

Definition. A sample space Ω is the set of all possible outcomes of an experiment.

Examples:

- Single coin flip: $\Omega=\{\underline{H, T}\}$
- Two coin flips: $\Omega=\{H H, H T, T H, T T\}$
- Roll of a die: $\Omega=\{1,2,3,4,5,6\}$

Events

Definition. An event $E \subseteq \Omega$ is a subset of possible outcomes.

Examples:

- Getting at least one head in two coin flips: $E=\{H H, H T, T H\}$
- Rolling an even number on a die : $E=\{2,4,6\}$

Events

Definition. An event $E \subseteq \Omega$ is a subset of possible outcomes.

Examples:

- Getting at least one head in two coin flips: $E=\{H H, H T, T H\}$
- Rolling an even number on a die $: E=\{2,4,6\}$

Definition. Events E and F are mutually exclusive if $E \cap F=\emptyset$ (i.e., can't happen at same time)

Examples:

- For dice rolls: If $E=\{2,4,6\}$ and $F=\{1,5\}$, then $E \cap F=\varnothing$

Example: 4-sided Dice

$$
|\Omega|=16
$$

Suppose I roll two 4-sided dice Let D1 be the value of the blue die and D2 be the value of the red die. To the right is the sample space (possible outcomes).

What outcomes match these events?
Die 2 (D2)
A. $\mathrm{D} 1=1$
B. $\mathrm{D}_{1}+\mathrm{D} 2=6$
C. $\mathrm{D} 1=2 * \mathrm{D} 2$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$
$\mathbf{2}$	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$
$\mathbf{3}$	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$
$\mathbf{4}$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$

Example: 4-sided Dice

Suppose I roll two 4-sided dice Let D1 be the value of the blue die and D2 be the value of the red die. To the right is the sample space (possible outcomes).

What outcomes match these events?
Die 2 (D2)

$$
\begin{array}{ll}
\text { A. } & \mathrm{D} 1=1 \\
& A=\{(1,1),(1,2),(1,3),(1,4)\} \\
\text { B. } & \mathrm{D} 1+\mathrm{D} 2=6 \\
& B=\{(2,4),(3,3),(4,2)\} \\
\text { C. } & \mathrm{D} 1=2 * \mathrm{D} 2 \\
& C=\{(2,1),(4,2)\}
\end{array}
$$

				$\mathbf{1}$
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
$\mathbf{1}$	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$
$\mathbf{2}$	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$
$\mathbf{3}$	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$
$\mathbf{4}$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$

Example: 4-sided Dice, Mutual Exclusivity
no avenlap.
Are A and B mutually exclusive?
How about B and C ?
https://pollev.com/ annakarlin185

A \& B (a) Yes	B \& C
(b) Yes	No
(c) No	Yes
(d) No	No

Die 2 (D2)
A. $\mathrm{D} 1=1$
B. $D_{1}+D_{2}=6$
C. $\mathrm{D}_{1}=2$ * D_{2}

Die 1 (D1)		1	2	3	4
	1	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$
	2	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$
	3	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$
	4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$

Agenda

- Events
- Probability
- Equally Likely Outcomes
- Probability Axioms and Beyond Equally Likely Outcomes
- More Examples

Idea: Probability

A probability is a number (between 0 and 1) describing how likely a particular outcome will happen.

Will define a function

$$
\mathbb{P}: \Omega \rightarrow[0,1]
$$

that maps outcomes $\omega \in \Omega$ to probabilities.

- Also use notation: $\mathbb{P}(\omega)=P(\omega)=\operatorname{Pr}(\omega)$

Example - Coin Tossing

Imagine we toss one coin - outcome can be heads or tails.
$\downarrow \downarrow$
$\Omega=\{\mathrm{H}, \mathrm{T}\}$
\mathbb{P} ? Depends! What do we want to model?!
Fair coin toss

$$
\mathbb{P}(\mathrm{H})=\mathbb{P}(\mathrm{T})=\frac{1}{2}=0.5
$$

Example - Coin Tossing

Imagine we toss one coin - outcome can be heads or tails.
$\Omega=\{\mathrm{H}, \mathrm{T}\}$
\mathbb{P} ? Depends! What do we want to model?!
Bent coin toss (e.g., biased or unfair coin)

$$
\mathbb{P}(\mathrm{H})=0.85, \quad \mathbb{P}(\mathrm{~T})=0.15
$$

Probability space

Definition. A (discrete) probability space is a pair (Ω, \mathbb{P}) where: \rightarrow set 1 possible

- Ω is a set called the sample space.
- \mathbb{P} is the probability measure, every ortare a function $\mathbb{P}: \Omega \rightarrow[0,1]$ such that:

$$
\longrightarrow \mathbb{P}(\omega) \geq 0 \text { for all } \omega \in \Omega
$$

$$
-\sum_{\omega \in \Omega} \mathbb{P}(\omega)=1
$$

Probability space

Either finite or infinite countable (e.g., integers)

Definition. A (discrete) probability space is a pair (Ω, \mathbb{P}) where:

- Ω is a set called the sample space.
- \mathbb{P} is the probability measure, a function $\mathbb{P}: \Omega \rightarrow[0,1]$ such that:
$-\mathbb{P}(\omega) \geq 0$ for all $\omega \in \Omega$.
$-\sum_{\omega \in \Omega} \mathbb{P}(\omega)=1$

| Some outcome must show |
| :--- | :--- |
| up |\quad| The likelihood (or |
| :--- |
| probability) of each |
| outcome is non-negative. |

Set of possible elementary outcomes

Specify Likelihood (or probability) of each elementary outcome

Uniform Probability Space

Definition. A uniform probability space is a pair (Ω, \mathbb{P}) such that

for all $x \in \Omega$.

$$
\mathbb{P}(x)=\frac{1}{|\Omega|}
$$

Examples:

$$
\begin{aligned}
\sum_{\omega \in \Omega}^{\operatorname{lr}(\omega)} & =\sum_{\omega \in \Omega} \frac{1}{\frac{1}{\mu}} \\
& =1
\end{aligned}
$$

- Fair coin $P(x)=\frac{1}{2}$
- Fair 6-sided die $P(x)=\frac{1}{6}$

Events

Definition. An event in a probability space (Ω, \mathbb{P}) is a subset $\mathcal{A} \subseteq \Omega$. Its probability is

$$
\mathbb{P}(\mathcal{A})=\sum_{\omega \in \mathcal{A}} \mathbb{P}(\omega)
$$

Convenient abuse of notation: \mathbb{P} is extended to be defined over sets. $\mathbb{P}(\omega)=\mathbb{P}(\{\omega\})$

Agenda

- Events
- Probability
- Equally Likely Outcomes
- Probability Axioms and Beyond Equally Likely Outcomes
- More Examples

Example: 4-sided Dice, Event Probability

Think back to 4 -sided die. Suppose each die is fair. What is the probability of event B ? $\operatorname{Pr}(B)=$?? ?

$$
\text { B. } \mathrm{D} 1+\mathrm{D} 2=6 \quad B=\{(2,4),(3,3)(4,2)\}
$$

Die 2 (Dz)

$$
\operatorname{Pr}(\omega)=\frac{1}{16}
$$

$$
\operatorname{Pr}\left(\theta_{1}+D_{2}=6\right)
$$

		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
	$\mathbf{1}$	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$
Die 1 (D1)	$\mathbf{2}$	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$
	$\mathbf{3}$	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$
$\mathbf{4}$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	

$$
=\frac{\operatorname{Pr}(4,2))}{\frac{1}{16}}+\frac{\operatorname{Pr}\left(\frac{3,3)}{16}\right)}{\frac{1}{16}}+\frac{\operatorname{Pr}(2,4)}{\left.\frac{1}{16}\right)}=\frac{3^{6}}{16}
$$

Equally Likely Outcomes

If (Ω, P) is a uniform probability space, then for any event $E \subseteq \Omega$, then

$$
P(E)=\frac{|E|}{|\Omega|}
$$

This follows from the definitions of the prob. of an event and uniform probability spaces.

$$
\begin{aligned}
\operatorname{Pr}(E)=\sum_{\omega \in E} \operatorname{Pr}(\omega) & =\sum_{\omega \in E} \frac{1}{|\Omega|} \\
& =\frac{|E|}{|\Omega|}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\Omega & =\left\{\text { all segnences of H's \& } T^{\prime}\right\} \\
\text { of length }
\end{array} 100\right\}
$$

Toss a coin 100 times. Each outcome is equally likely. What is the probability of seeing 50 heads?

$$
\operatorname{Pr}(E)=\frac{|E|}{|\Omega|}
$$

https://pollev.com/ annakarlin185
(A) $\frac{1}{2}$

$$
|\Omega|=2^{100}
$$

(B) $\frac{1}{250}$
(C) $\frac{\left(\begin{array}{c}100 \\ 2^{100}\end{array}\right.}{1}$
(D) Not sure

$$
\frac{H k}{1} \frac{\mathscr{H}}{\uparrow} \frac{H}{\uparrow} \frac{H}{\uparrow}==\frac{100}{}
$$

$$
|E|=\binom{100}{50}
$$

Brain Break

Agenda

- Events
- Probability
- Equally Likely Outcomes
- Probability Axioms and Beyond Equally Likely Outcomes
- More Examples

Axioms of Probability

Let Ω denote the sample space and $E, F \subseteq \Omega$ be events. Note this is applies to any probability space (not just uniform)
\Rightarrow Axiom 1 (Non-negativity): $P(E) \geq 0$.
Axiom 2 (Normalization): $P(\Omega)=1$
Axiom 3 (Countable Additivity): If E and F are mutually exclusive, then $P(E \cup F)=P(E)+P(F)$

Corollary 1 (Complementation): $P\left(E^{c}\right)=1-P(E)$.
Corollary 2 (Monotonicity): If $E \subseteq F, P(E) \leq P(F)$
Corollary 3 (Inclusion-Exclusion): $P(E \cup F)=P(E)+P(F)-P(E \cap F)$

$$
\begin{gathered}
E \cup E^{c}=\Omega \\
\operatorname{Pr}\left(E \cup E^{c}\right)=\operatorname{Pr}(E)+\operatorname{Pr}\left(E^{c}\right) \\
\operatorname{Pr}(\Omega)=1
\end{gathered}
$$

Review Probability space

Either finite or infinite countable (e.g., integers)

Definition. A (discrete) probability space is a pair (Ω, \mathbb{P}) where:

- Ω is a set called the sample space.
- \mathbb{P} is the probability measure, a function $\mathbb{P}: \Omega \rightarrow[0,1]$ such that:
$-\mathbb{P}(\omega) \geq 0$ for all $\omega \in \Omega$.
$-\sum_{\omega \in \Omega} \mathbb{P}(\omega)=1$

Some outcome must show up	The likelihood (or probability) of each outcome is non-negative.

up

Set of possible elementary outcomes

Specify Likelihood (or probability) of each elementary outcome

Non-equally Likely Outcomes

Probability spaces can have non-equally likely outcomes.

$$
\left\{\begin{array}{ccc}
H H, & H T, & T H, T \\
0 & 0.5 & 0.5
\end{array}\right.
$$

More Examples of Non-equally Likely Outcomes

Physical experiment

Agenda

- Events
- Probability
- Equally Likely Outcomes
- Probability Axioms and Beyond Equally Likely Outcomes
- More Examples

Example: Dice Rolls
uniform prob space.
Suppose I had a two, fair, 6 -sided dice that we roll once each. What is the probability that we see at least one 3 in the two rolls.

$$
\begin{aligned}
& \Omega=\{(1,1),(1,2) \ldots \\
& |\Omega|=36 .
\end{aligned}
$$

E: outcomes thatirclude at leas are 31 DO

$$
\begin{aligned}
& \operatorname{Pr}(E)= 1-\operatorname{Pr}\left(E^{c}\right) \\
& n_{0} 3 \\
&= 1-\frac{1 E 9}{|\Omega|}=1-\frac{25}{36}=\frac{11}{36}
\end{aligned}
$$

$$
\bar{E}=E^{c}=\Omega \backslash E
$$

Example: Birthday "Paradox"
unison prob space.
Suppose we have a collection of n people in a room. What is the probability that at least 2 people share a birthday? Assuming there are 365 possible birthdays, with uniform probability for each day.

$$
\begin{aligned}
& 1 \begin{array}{ll}
p_{1} & p_{2} \\
\text { mad } \\
\text { sir }
\end{array} \\
& \left.\left.\Omega=\frac{\left\{\left(b_{i}, b_{2}, \ldots, b_{n}\right)\right.}{3} \right\rvert\, 1 \leqslant b_{i} \leqslant 365\right\} \\
& |\Omega|=365^{n}
\end{aligned}
$$

$$
\begin{aligned}
& E: \text { There are } 2 \text { people ur same day. } \\
& \operatorname{Pr}(E)=1-\operatorname{Pr}\left(\frac{\bar{E}}{1}\right)=1-\frac{|\bar{E}|}{365^{n}} \\
& \text { no } 2 \text { people han save day } \\
& \left.|\bar{E}|=365 \cdot 364 \cdots 365-n+1=\frac{365!}{(365-n)!}=P(365)^{n}\right)
\end{aligned}
$$

Example: Birthday "Paradox" cont.

$$
1-\frac{P(365, n)}{365^{n}} \quad \begin{array}{ll}
n=23>0.5 \\
n=60 & n=0.98
\end{array}
$$

May 8
Pr (grexp of people 3 soreon kypho has bday

$$
\begin{aligned}
& =1-\operatorname{Pr}\left(\begin{array}{c}
\text { rebody } \left.\begin{array}{l}
\text { ras }
\end{array} \operatorname{may}\right)=1-\frac{364^{n}}{365^{n}}
\end{array}\right. \\
& n=23 \\
& 0.06 \\
& 64 \\
& 0.16 \\
& 150 \\
& 0.23
\end{aligned}
$$

Example: Birthday "Paradox" cont.

