CSE 312
 Foundations of Computing II

Lecture 5: Conditional Probability and Bayes Theorem

WPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Thank you for your feedback!!!

- Several people mentioned that I was going too fast.
- Slow me down! Ask questions!!!
- Watch Summer 2020 videos before class (at half speed)

Use edstem thread!

- Do the reading before class.
- Some people said they wanted more practice
- Problems in textbook
- Do the section problems!
- MIT "Mathematics for Computer Science" 6.042J (sections on counting \& probability)
- Get the book "A First Course in Probability" by Sheldon Ross
- More office hours?

Review Probability

Definition. A sample space Ω is the set of all possible outcomes of an experiment.

Examples:

- Single coin flip: $\Omega=\{H, T\}$
- Two coin flips: $\Omega=\{H H, H T, T H, T T\}$
- Roll of a die: $\Omega=\{1,2,3,4,5,6\}$

Examples:

- Getting at least one head in two coin flips:

$$
E=\{H H, H T, T H\}
$$

- Rolling an even number on a die :

$$
\begin{aligned}
& \operatorname{Pr}(\omega)=\frac{1}{|\Omega|} \\
& \mathbb{U}^{(I)}, \\
& \operatorname{Pr}(E)=\frac{|E|}{|\Omega|}
\end{aligned}
$$

$$
E=\{2,4,6\}
$$

$$
\sum_{\omega \in \Omega} P^{\prime}(\omega)=1
$$

uniform prob space

$$
\operatorname{Pr}(E)=\sum_{\omega \in E}^{R(\omega)} \Longrightarrow
$$

Review Axioms of Probability

Let Ω denote the sample space and $E, F \subseteq \Omega$ be events. Note this is more general to any probability space (not just uniform)
\rightarrow Axiom 1 (Non-negativity): $P(E) \geq 0$
\rightarrow Axiom 2 (Normalization): $P(\Omega)=1$
Axiom 3 (Countable Additivity): If E and F are mutually exclusive, then $P(E \cup F)=P(E)+P(F)$

Corollary 1 (Complementation): $P\left(E^{c}\right)=1-P(E)$
Corollary 2 (Monotonicity): If $E \subseteq F, P(E) \leq P(F)$
Corollary 3 (Inclusion-Exclusion): $P(E \cup F)=P(E)+P(F)-P(E \cap F)$

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- Bayes Theorem + Law of Total Probability
- More Examples

$$
\begin{array}{r}
36+7+13+14=70 \\
|A|=70
\end{array}
$$

Conditional Probability (Idea)

$$
\operatorname{Pr}(w)=\frac{1}{70}
$$

$$
\operatorname{Pr}(A)=\frac{36+7}{70}
$$

What's the probability that someone likes ice cream, given they like donuts?

$$
\operatorname{Pr}\left(\frac{A \mid B}{\substack{\text { guenthat }}}=\frac{7}{7+B 3}=\frac{A}{|B| B \mid}=\frac{|A \cap B / / \Omega|}{|B| / \Omega \mid}=\frac{B}{\operatorname{Pr}(A \cap B)} \operatorname{Pr}(B)\right.
$$

$$
\operatorname{Pr}(E \mid F)
$$

Conditional Probability $\operatorname{Pr}(A)=\operatorname{Pr}(A \mid \Omega)=\frac{\operatorname{Pr}(A \cap \Omega)}{\operatorname{Pr} \mid \Omega)}$
Definition. The conditional probability of event A given an event B happened (assuming $P(B) \neq 0$) is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Prob of A given B
(Prob of A conditaved on B)
An equivalent and useful formula is
Ω

$$
\Rightarrow P(A \cap B)=P(A \mid B) P(B)
$$

Reversing Conditional Probability

Question: Does $P(A \mid B)=P(B \mid A)$?

No! The following is purely for intuition and makes no sense in terms of probability

- Let A be the event you are wet
- Let B be the event you are swimming

$$
\begin{aligned}
& P(A \mid B)=1 \\
& P(B \mid A) \neq 1
\end{aligned}
$$

Example with Conditional Probability

https://pollev.com/ annakarlin185

Toss a red die and a blue die (both 6 sided and all outcomes equally likely). What is $P(B)$? What is $P(B \mid A)$?

	$\mathrm{P}(B)$	$P(B \mid A)$
a)	$1 / 6$	$1 / 6$
b)	$1 / 6$	$1 / 3$
c)	$1 / 6$	$3 / 36$

d) $1 / 9 \quad 1 / 3$

$\operatorname{Pr}(\omega)=\frac{1}{36}$
A: sum is 4 B : red die shows 1
$\operatorname{Pr}(B \mid A)=\frac{\operatorname{Pr}(B \cap A)}{P(A)}$

$$
\operatorname{Pr}(B)=\frac{|B|}{191}=\frac{6}{36}=\frac{1}{6}
$$

$$
P(B \mid A)=\frac{1 / 36}{3 / 36}=\frac{1}{3}
$$

$$
\operatorname{Pr}(E \mid F)=\frac{\operatorname{Pr}(E \cap F)}{\operatorname{Pr}(F)}=\frac{\frac{\mid E F}{\frac{H F}{1 F}}}{\frac{1 H}{1 F}}=\frac{|E \cap F|}{|F|}
$$

Gambler's fallacy
$\Omega=$ setpall seas of tenge si f that's,

$$
|\Omega|=2^{51} \text { uniform parsspace. }
$$

Assume we toss 51 fair coins.
Assume we have seen 50 coins, and they are all "tails".
What are the odds the $51^{\text {st }}$ coin is "heads"?
$\mathcal{A}=$ first 50 coins are "tails"

$$
=\{\sim_{T} s^{50} \text { "heads"? } \overbrace{T T \ldots T H}^{50} T_{H}^{50}\}
$$

$B=$ first 50 coins are "tails", $51^{\text {st }}$ coin is "heads"

$$
\begin{aligned}
\mathbb{P}(B \mid \mathcal{A})= & \underset{\rightarrow \frac{\operatorname{Pr}(B \cap A)}{\operatorname{Pr}(A)}=\frac{|B \cap A|}{|A|}=\frac{1}{2}}{ } \begin{array}{l}
|B \cap A / / G| \\
\mid A N T
\end{array}
\end{aligned}
$$

Gambler's fallacy

Assume we toss 51 fair coins.
Assume we have seen $\mathbf{5 0}$ coins, and they are all "tails".
What are the odds the $\mathbf{5 1}^{\text {st }}$ coin is "heads"?
$\mathcal{A}=$ first 50 coins are "tails"
$B=$ first 50 coins are "tails", $51^{\text {st }}$ coin is "heads" $51^{\text {st }}$ coin is independent of
$\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})}=\frac{1 / 2^{51}}{2 / 2^{51}}=\frac{1}{2} \quad$ outcomes of first 50 tosses!
Gambler's fallacy = Feels like it's time for " heads"!?

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- Bayes Theorem + Law of Total Probability
- More Examples

Bayes Theorem

A formula to let us "reverse" the conditional.

Theorem. (Bayes Rule) For events A and B , where $P(A), P(B)>0$,

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

$P(A)$ is called the prior (our belief without knowing anything) $P(A \mid B)$ is called the posterior (our belief after learning B)

Bayes Theorem Proof

$\log _{\substack{ }}^{\text {of ont }}$ prob.

By definition of conditional probability

Swapping A, B gives

But $P(A \cap B)=P(B \cap A)$, so

$$
P(A \mid B) P(B)=P(B \mid A) P(A)
$$

Dividing both sides by $P(B)$ gives

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Our First Machine Learning Task: Spam Filtering
S: email is spam
Subject: "FREE \$\$ CLICK HERE"
F: subject lime contains "Free"

What is the probability this email is spam, given the subject contains "FREE"? Some useful stats:

- 10% of ham (i.e., not spam) emails contain the word "FREE" in the subject. $\operatorname{Pr}(F / \mathrm{S}=0.1$
-70% of spam emails contain the word "FREE" in the subject. \square $\operatorname{Pr}(F \mid S)=0.7$
-80% of emails you receive are spam. $\leftarrow \operatorname{Pr}(S)=0.8$

$$
\begin{aligned}
\operatorname{Pr}(S \mid F) & =\frac{\operatorname{Pr}(F \mid S) P(S)}{\operatorname{Pr}(F)}= \\
& =\frac{0.7 \cdot 0.8}{\operatorname{Pr}(F)}
\end{aligned}
$$

Brain Break

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- Bayes Theorem + Law of Total Probability
- More Examples

Partitions (Idea)

These events partition the sample space

1. They "cover" the whole space
2. They don't overlap

Partition

Definition. Non-empty events $E_{1}, E_{2}, \ldots, E_{n}$ partition the sample space Ω if (Exhaustive)

$$
E_{1} \cup E_{2} \cup \cdots \cup E_{n}=\bigcup_{i=1}^{n} E_{i}=\Omega
$$

(Pairwise Mutually Exclusive)

$$
\forall_{i} \forall_{i \neq j} E_{i} \cap E_{j}=\emptyset
$$

Law of Total Probability (Idea)

If we know $E_{1}, E_{2}, \ldots, E_{n}$ partition Ω, what can we say about $P(F)$

$\operatorname{Pr}(F)=\operatorname{Pr}\left(F \cap E_{1}\right)+P\left(F \cap E_{2}\right)+P\left(F \cap E_{3}\right)+\underset{0}{\left(F \cap E_{4}\right)}$

Law of Total Probability (LTP)

Definition. If events $E_{1}, E_{2}, \ldots, E_{n}$ partition the sample space Ω, then for any event F

$$
P(F)=P\left(F \cap E_{1}\right)+\ldots+P\left(F \cap E_{n}\right)=\sum_{i=1}^{n} P\left(F \cap E_{i}\right)
$$

Using the definition of conditional probability $P(F \cap E)=P(F \mid E) P(E)$ We can get the alternate form of this that show

$$
P(F)=\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)
$$

Another Contrived Example

Alice has two pockets:

- Left pocket: Two red balls, two green balls
- Right pocket: One red ball, two green balls.

Alice picks a random ball from a random pocket. [Both pockets equally likely, each ball equally likely.]

What is $\mathbb{P}(\mathbb{R})$? red ball.

Sequential Process - Non-Uniform Case

- Left pocket: Two red, two green
- Right pocket: One red, two green.
- Alice picks a random ball from a random pocket

$$
\begin{aligned}
& \operatorname{Pr}(F)=\sum_{i=1}^{n} \operatorname{Pr}\left(F E_{i}\right) P\left(E_{E}\right) \quad L T P .
\end{aligned}
$$

Sequential Process - Non-Uniform Case

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- Bayes Theorem + Law of Total Probability
- More Examples

Our First Machine Learning Task: Spam Filtering
S: email is spam
Subject: "FREE \$\$ CLICK HERE"
F: subject line contains "Free"

What is the probability this email is spam, given the subject contains "FREE"? Some useful stats:

- 10\% of ham (i.e., not spam) emails contain the word "FREE" ir the subject. $\operatorname{Pr}(F \mid \bar{S})=0.1$
- 70% of spam emails contain the word "FREE" in the subject. $L \operatorname{Pr}(F \mid S)=0.7$
-80% of emails you receive are spam. $\rightleftharpoons \operatorname{Pr}(S)=0.8$

$$
\begin{aligned}
\operatorname{Pr}(S \mid F) & =\frac{\operatorname{Pr}(F \mid S) \operatorname{PS}(S)}{\operatorname{Pr}(F)}= \\
& =\frac{0.7 \cdot 0.8}{\operatorname{PrF})} \\
\operatorname{Pr}(F) & =\operatorname{Pr}(F \mid S) \operatorname{P(S})+\operatorname{P(F|\overline {S})} \operatorname{Pr}(\bar{S})
\end{aligned}
$$

Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_{1}, E_{2}, \ldots, E_{n}$ be a partition of the sample space, and F and event. Then,

$$
P\left(E_{1} \mid F\right)=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{P(F)}=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)}
$$

Simple Partition: In particular, if E is an event with non-zero probability, then

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P\left(F \mid E^{C}\right) P\left(E^{C}\right)}
$$

