CSE 312
 Foundations of Computing II

Lecture 20: Continuity Correction \& Distinct Elements

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun's and Anna Karlin's slides for 312 20su and 20au

The CLT - Recap

Theorem. (Central Limit Theorem) X_{1}, \ldots, X_{n} iid with mean μ and variance σ^{2}. Let $Y_{n}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}$. Then,

$$
\lim _{n \rightarrow \infty} Y_{n} \rightarrow \mathcal{N}(0,1)
$$

One main application:
Use Normal Distribution to Approximate Y_{n} No need to understand Y_{n} !!

Example - Y_{n} is binomial

We understand binomial, so we can see how well approximation works
We flip n independent coins, heads with probability $p=0.75$.
$X=\#$ heads $\quad \mu=\mathbb{E}(X)=0.75 n \quad \sigma^{2}=\operatorname{Var}(X)=p(1-p) n=0.1875 n$

	n	exact	$\mathcal{N}\left(\mu, \sigma^{2}\right)$ approx
$\mathbb{P}(X \leq 0.7 n)$	10	0.4744072	0.357500327
	50	0.38282735	0.302788308
	100	0.25191886	0.207108089
	200	0.06247223	0.124106539
	1000	0.00019359	0.000130365

Example - Naive Approximation

Fair coin flipped (independently) 40 times. Probability of $\mathbf{2 0}$ or $\mathbf{2 1}$ heads?
Exact. $\mathbb{P}(X \in\{20,21\})=\left[\binom{40}{20}+\binom{40}{21}\right]\left(\frac{1}{2}\right)^{40} \approx 0.2448$
Approx. $\quad X=\#$ heads $\quad \mu=\mathbb{E}(X)=0.5 n=20 \quad \sigma^{2}=\operatorname{Var}(X)=0.25 n=10$

$$
\begin{aligned}
\mathbb{P}(20 \leq X \leq 21) & =\Phi\left(\frac{20-20}{\sqrt{10}} \leq \frac{X-20}{\sqrt{10}} \leq \frac{21-20}{\sqrt{10}}\right) \\
& \approx \Phi\left(0 \leq \frac{X-20}{\sqrt{10}} \leq 0.32\right) \\
& =\Phi(0.32)-\Phi(0) \approx 0.1241
\end{aligned}
$$

Example - Even Worse Approximation

Fair coin flipped (independently) $\mathbf{4 0}$ times. Probability of $\mathbf{2 0}$ heads?
Exact. $\quad \mathbb{P}(X=20)=\binom{40}{20}\left(\frac{1}{2}\right)^{40} \approx 0.1254$

Approx. $\mathbb{P}(20 \leq X \leq 20)=0$

Solution - Continuity Correction

Round to next integer!

To estimate probability that discrete RV lands in (integer) interval $\{a, \ldots, b\}$, compute probability continuous approximation lands in interval $\left[a-\frac{1}{2}, b+\frac{1}{2}\right]$

Example - Continuity Correction

Fair coin flipped (independently) 40 times. Probability of $\mathbf{2 0}$ or $\mathbf{2 1}$ heads?
Exact. $\mathbb{P}(X \in\{20,21\})=\left[\binom{40}{20}+\binom{40}{21}\right]\left(\frac{1}{2}\right)^{40} \approx 0.2448$
Approx. $\quad X=\#$ heads $\quad \mu=\mathbb{E}(X)=0.5 n=20 \quad \sigma^{2}=\operatorname{Var}(X)=0.25 n=10$

$$
\begin{aligned}
\mathbb{P}(19.5 \leq X \leq 21.5) & =\Phi\left(\frac{19.5-20}{\sqrt{10}} \leq \frac{X-20}{\sqrt{10}} \leq \frac{21.5-20}{\sqrt{10}}\right) \\
\approx & \Phi\left(-0.16 \leq \frac{X-20}{\sqrt{10}} \leq 0.47\right) \\
= & \Phi(-0.16)-\Phi(0.47) \approx 0.2452
\end{aligned}
$$

Example - Continuity Correction

Fair coin flipped (independently) 40 times. Probability of $\mathbf{2 0}$ heads?
Exact. $\quad \mathbb{P}(X=20)=\binom{40}{20}\left(\frac{1}{2}\right)^{40} \approx 0.1254$
Approx. $\mathbb{P}(19.5 \leq X \leq 20.5)=\Phi\left(\frac{19.5-20}{\sqrt{10}} \leq \frac{X-20}{\sqrt{10}} \leq \frac{20.5-20}{\sqrt{10}}\right)$

$$
\begin{aligned}
& \approx \Phi\left(-0.16 \leq \frac{X-20}{\sqrt{10}} \leq 0.16\right) \\
& =\Phi(-0.16)-\Phi(0.16) \approx 0.1272
\end{aligned}
$$

Application: Distinct Elements

 (code this in Pset 6)
Data mining - Stream Model

- In many data mining situations, the data is not known ahead of time.

Examples: Google queries, Twitter or Facebook status updates Youtube video views

- In some ways, best to think of the data as an infinite stream that is non-stationary (distribution changes over time)
- Input elements (e.g. Google queries) enter/arrive one at a time. We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream using a limited amount of memory?

Problem Setup

- Input: sequence of N elements $x_{1}, x_{2}, \ldots, x_{N}$ from a known universe U (e.g., 8-byte integers).
- Goal: perform a computation on the input, in a single left to right pass where
- Elements processed in real time
- Can't store the full data. => use minimal amount of storage while maintaining working "summary"

What can we compute?

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

- Some functions are easy:
- Min
- Max
- Sum
- Average

Today: Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Application:
You are the content manager at YouTube, and you are trying to figure out the distinct view count for a video. How do we do that?

Note: A person can view their favorite videos several times, but they only count as 1 distinct view!

Other applications

- IP packet streams: How many distinct IP addresses or IP flows (source+destination IP, port, protocol)
* Anomaly detection, traffic monitoring
- Search: How many distinct search queries on Google on a certain topic yesterday
- Web services: how many distinct users (cookies) searched/browsed a certain term/item
* Advertising, marketing trends, etc.

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
$\mathrm{N}=$ \# of IDs in the stream = 11, $\mathrm{m}=\#$ of distinct IDs in the stream = 5
Want to compute number of distinct IDs in the stream.

- Naïve solution: As the data stream comes in, store all distinct IDs in a hash table.
- Space requirement $O(m)$, where m is the number of distinct IDs
- Consider the number of users of youtube, and the number videos on youtube. This is not feasible.

Counting distinct elements
32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Want to compute number of distinct IDs in the stream.

- How to do this without storing all the elements?

Yet another super cool application of probability

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
$y_{1}, y_{2}, y_{3}, y_{1}, y_{4}, y_{2}, y_{1}, y_{4}, y_{1}, y_{2}, y_{5}$

Hash function $h: U \rightarrow[0,1]$
Assumption: For distinct values in U, the function maps to iid (independent and identically distributed) Unif(0,1) random numbers.

Important: if you were to feed in two equivalent elements, the function returns the same number.

- So m distinct elements $\rightarrow \mathrm{m}$ iid uniform y_{i} 's

Min of IID Uniforms

If Y_{1}, \cdots, Y_{m} are iid Unif(0,1), where do we expect the points to end up?

$$
\begin{aligned}
& \text { In general, } \mathrm{E}\left[\min \left(Y_{1}, \cdots, Y_{m}\right)\right]=\frac{1}{m+1} \\
& \mathrm{E}\left[\min \left(Y_{1}\right)\right]=\frac{1}{1+1}=\frac{1}{2} \\
& m=1 \\
& m=2 \\
& m=4
\end{aligned}
$$

A super duper clever idea

If Y_{1}, \cdots, Y_{n} are iid Unif(0,1), where do we expect the points to end up?

$$
\text { In general, } \mathrm{E}\left[\min \left(Y_{1}, \cdots, Y_{m}\right)\right]=\frac{1}{m+1}
$$

Idea: $\mathrm{m}=\frac{1}{\mathrm{E}\left[\min \left(Y_{1}, \cdots, Y_{m}\right)\right]}-1$
Let's keep track of the value val of min of hash values, and estimate m as Round $\left(\frac{1}{\text { val }}-1\right)$

The Distinct Elements Algorithm

```
Algorithm 2 Distinct Elements Operations
    function initialize()
        val \(\leftarrow \infty\)
    function UPDATE (x)
        val \(\leftarrow \min \{\) val, hash \((\mathrm{x})\}\)
    function estimate()
        return round \(\left(\frac{1}{\text { val }}-1\right)\)
    for \(i=1, \ldots, N\) : do
        update \(\left(x_{i}\right)\)
    return estimate()
```

\triangleright Loop through all stream elements

- Update our single float variable
\triangleright An estimate for n, the number of distinct elements.

Distinct Elements Example

Stream: 13, 25, 19, 25, 19, 19

Hashes:

```
Algorithm 2 Distinct Elements Operations
    function initialize()
        val \(\leftarrow \infty\)
    function UPDATE ( x )
        val \(\leftarrow \min \{\) val, hash \((\mathrm{x})\}\)
    function estimate()
        return round \(\left(\frac{1}{\text { val }}-1\right)\)
    for \(i=1, \ldots, N\) : do \(\quad \triangleright\) Loop through all stream elements
        update \(\left(x_{i}\right) \quad \triangleright\) Update our single float variable
    return estimate() \(\triangleright\) An estimate for \(n\), the number of distinct elements.
```


Distinct Elements Example

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51,

```
Algorithm 2 Distinct Elements Operations
    function initialize()
        val \(\leftarrow \infty\)
    function UPDATE ( x )
        val \(\leftarrow \min \{\) val, hash \((\mathrm{x})\}\)
    function estimate()
        return round \(\left(\frac{1}{\text { val }}-1\right)\)
    for \(i=1, \ldots, N\) : do \(\quad \triangleright\) Loop through all stream elements
        update \(\left(x_{i}\right) \quad \triangleright\) Update our single float variable
    return estimate() \(\triangleright\) An estimate for \(n\), the number of distinct elements.
```


Distinct Elements Example

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51,

```
Algorithm 2 Distinct Elements Operations
    function initialize()
        val \(\leftarrow \infty\)
    function UPDATE ( \(\mathbf{x}\) )
        val \(\leftarrow \min \{\) val, hash \((\mathrm{x})\}\)
    function estimate()
        return round \(\left(\frac{1}{\text { val }}-1\right)\)
    for \(i=1, \ldots, N\) : do \(\quad \triangleright\) Loop through all stream elements
        update \(\left(x_{i}\right) \quad \triangleright\) Update our single float variable
    return estimate() \(\triangleright\) An estimate for \(n\), the number of distinct elements.
```


Distinct Elements Example

Stream: 13, 25, 19, 25, 19, 19
Hashes: 0.51, 0.26,

```
Algorithm 2 Distinct Elements Operations
    function initialize()
        val \(\leftarrow \infty\)
    function UPDATE ( \(\mathbf{x}\) )
        val \(\leftarrow \min \{\) val, hash \((\mathrm{x})\}\)
    function estimate()
        return round \(\left(\frac{1}{\text { val }}-1\right)\)
    for \(i=1, \ldots, N\) : do \(\quad \triangleright\) Loop through all stream elements
        update \(\left(x_{i}\right) \quad \triangleright\) Update our single float variable
    return estimate() \(\triangleright\) An estimate for \(n\), the number of distinct elements.
```


Distinct Elements Example

Stream: 13, 25, 19, 25, 19, 19
Hashes: 0.51, 0.26, 0.79,

```
Algorithm 2 Distinct Elements Operations
    function initialize()
        val \(\leftarrow \infty\)
    function UPDATE ( \(\mathbf{x}\) )
        val \(\leftarrow \min \{\) val, hash \((\mathrm{x})\}\)
    function estimate()
        return round \(\left(\frac{1}{\text { val }}-1\right)\)
    for \(i=1, \ldots, N\) : do \(\quad \triangleright\) Loop through all stream elements
        update \(\left(x_{i}\right) \quad \triangleright\) Update our single float variable
    return estimate() \(\triangleright\) An estimate for \(n\), the number of distinct elements.
```


Distinct Elements Example

Stream: 13, 25, 19, 25, 19, 19
Hashes: 0.51, 0.26, 0.79, 0.26,

```
Algorithm 2 Distinct Elements Operations
    function initialize()
        val \(\leftarrow \infty\)
    function UPDATE ( \(\mathbf{x}\) )
        val \(\leftarrow \min \{\) val, hash \((\mathrm{x})\}\)
    function estimate()
        return round \(\left(\frac{1}{\text { val }}-1\right)\)
    for \(i=1, \ldots, N\) : do \(\quad \triangleright\) Loop through all stream elements
        update \(\left(x_{i}\right)\)
    return estimate()
```

- Update our single float variable \triangleright An estimate for n, the number of distinct elements.

$$
\text { val = } 0.26
$$

Distinct Elements Example

Stream: 13, 25, 19, 25, 19, 19
Hashes: 0.51, 0.26, 0.79, 0.26, 0.79,

```
Algorithm 2 Distinct Elements Operations
    function initialize()
        val \(\leftarrow \infty\)
    function UPDATE ( \(\mathbf{x}\) )
        val \(\leftarrow \min \{\) val, hash \((\mathrm{x})\}\)
    function estimate()
        return round \(\left(\frac{1}{\text { val }}-1\right)\)
    for \(i=1, \ldots, N\) : do \(\quad \triangleright\) Loop through all stream elements
        update \(\left(x_{i}\right)\)
    return estimate()
```

- Update our single float variable \triangleright An estimate for n, the number of distinct elements.

$$
\text { val = } 0.26
$$

Distinct Elements Example

Stream: 13, 25, 19, 25, 19, 19
Hashes: $0.51,0.26,0.79,0.26,0.79,0.79$

```
Algorithm 2 Distinct Elements Operations
    function initialize()
        val}\leftarrow
    function UPDATE(x)
        val = 0.26
        val }\leftarrow\operatorname{min}{\mathrm{ val, hash(x)}
    function estimate()
        return round ( }\frac{1}{\mathrm{ val }}-1
    for i=1,\ldots,N: do }\quad\triangleright\mathrm{ Loop through all stream elements
        update( }\mp@subsup{x}{i}{}\mathrm{ )
    return estimate()
```

- Update our single float variable \triangleright An estimate for n, the number of distinct elements.

Distinct Elements Example

Stream: 13, 25, 19, 25, 19, 19
Hashes: $0.51,0.26,0.79,0.26,0.79,0.79$

```
Algorithm 2 Distinct Elements Operations
    function initialize()
        val \(\leftarrow \infty\)
    function UPDATE \((x)\)
        val \(\leftarrow \min \{\) val, hash \((\mathrm{x})\}\)
    function estimate()
        return round \(\left(\frac{1}{\text { val }}-1\right)\)
    for \(i=1, \ldots, N\) : do
        update \(\left(x_{i}\right)\)
    return estimate()
```

\triangleright Loop through all stream elements

- Update our single float variable
\triangleright An estimate for n, the number of distinct elements.
val $=0.26$
Return
round(1/0.26-1) = round $(2.846)=3$

Diy: Distinct Elements Example II

Stream: 11, 34, 89, 11, 89, 23
Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

```
Algorithm 2 Distinct Elements Operations
    function initialize()
        val \(\leftarrow \infty\)
    function UPDATE( x )
        val \(\leftarrow \min \{\) val, hash \((\mathrm{x})\}\)
    function estimate()
        return round \(\left(\frac{1}{\text { val }}-1\right)\)
    for \(i=1, \ldots, N\) : do \(\quad \triangleright\) Loop through all stream elements
        update \(\left(x_{i}\right)\)
    return estimate()
val \(=0.1\)
Return= 9
```

\triangleright Loop through all stream elements \checkmark Update our single float variable \triangle An estimate for n, the number of distinct elements.

Problem

val $=\min \left(Y_{1}, \cdots, Y_{m}\right)$
$\mathrm{E}[$ val $]=\frac{1}{m+1}$
Algorithm:
Track val $=\min \left(h\left(X_{1}\right), \cdots, h\left(X_{N}\right)\right)=\min \left(Y_{1}, \cdots, Y_{m}\right)$ estimate $\mathrm{m}=1 / \mathrm{val}-1$

But, val is not $\mathrm{E}[$ val $]$! How far is val from $\mathrm{E}[$ val $]$?
$\operatorname{Var}[\operatorname{val}] \approx \frac{1}{(m+1)^{2}}$

How can we reduce the variance?

Idea: Repetition to reduce variance!
Use k independent hash functions $h^{1}, h^{2}, \cdots h^{k}$ Keep track of k independent min hash values

val $^{1}=\min \left(h^{1}\left(x_{1}\right), \cdots, h^{1}\left(x_{N}\right)\right)=\min \left(Y_{1}^{1}, \cdots, Y_{m}^{1}\right)$
val $^{2}=\min \left(h^{2}\left(x_{1}\right), \cdots, h^{2}\left(x_{N}\right)\right)=\min \left(\mathrm{Y}_{1}^{2}, \cdots, Y_{m}^{2}\right)$
$v a l^{k}=\min \left(h^{k}\left(x_{1}\right), \cdots, h^{k}\left(x_{N}\right)\right)=\min \left(\mathrm{Y}_{1}^{\mathrm{k}}, \cdots, Y_{m}^{k}\right)$
val $=\frac{1}{k} \Sigma_{i}$ val $_{i}, \quad$ Estimate $m=\frac{1}{v a l}-1$

