
CSE 312

Foundations of Computing II
Lecture 20: Continuity Correction & Distinct Elements

1
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The CLT – Recap
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Theorem. (Central Limit Theorem) !", … , !% iid with mean & and 
variance '(. Let )% = +,-⋯-+/0%1

2 % . Then,  

lim
%→7

)% → 8(0,1)

One main application: 
Use Normal Distribution to Approximate )%

No need to understand )% !!



Example – !" is binomial  

We flip # independent coins, heads with probability $ = 0.75. 
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* = # heads 

ℙ(* ≤ 0.7#)

# exact / 0, 23
approx

10 0.4744072 0.357500327
20 0.38282735 0.302788308
50 0.25191886 0.207108089
100 0.14954105 0.124106539
200 0.06247223 0.051235217
1000 0.00019359 0.000130365

6 = 7 * = 0.75# 89 = Var * = $ 1 − $ # = 0.1875#

We understand binomial, so we can see how well approximation works 



Example – Naive Approximation

Fair coin flipped (independently) 40 times. Probability of 20 or 21 heads?
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Exact. ℙ " ∈ 20,21 = 40
20 + 40

21
1
2

+,
≈ 0.2448

Approx.

ℙ 20 ≤ " ≤ 21 = Φ 20 − 20
10 ≤ " − 20

10 ≤ 21 − 20
10

≈ Φ 0 ≤ " − 20
10 ≤ 0.32

= Φ 0.32 − Φ 0 ≈ 0.1241
!

" = # heads 4 = 5 " = 0.57 = 20 89 = Var " = 0.257 = 10



Example – Even Worse Approximation

Fair coin flipped (independently) 40 times. Probability of 20 heads?
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Exact. ℙ " = 20 = 40
20

1
2

()
≈ 0.1254

Approx. ℙ 20 ≤ " ≤ 20 = 0 !



Solution – Continuity Correction 

Round to next integer!
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To estimate probability that discrete RV lands in (integer) interval {", … , %}, compute 
probability continuous approximation lands in interval [" − )

* , % +
)
*]



Example – Continuity Correction

Fair coin flipped (independently) 40 times. Probability of 20 or 21 heads?
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Exact. ℙ " ∈ 20,21 = 40
20 + 40

21
1
2

+,
≈ 0.2448

Approx.

ℙ 19.5 ≤ " ≤ 21.5 = Φ 19.5 − 20
10 ≤ " − 20

10 ≤ 21.5 − 20
10

≈ Φ −0.16 ≤ " − 20
10 ≤ 0.47

= Φ −0.16 − Φ 0.47 ≈ 0.2452
!

" = # heads 7 = 8 " = 0.59 = 20 :; = Var " = 0.259 = 10



Example – Continuity Correction

Fair coin flipped (independently) 40 times. Probability of 20 heads?
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Exact. ℙ " = 20 = 40
20

1
2

()
≈ 0.1254

Approx. ℙ 19.5 ≤ " ≤ 20.5 = Φ 19.5 − 20
10 ≤ " − 20

10 ≤ 20.5 − 20
10

≈ Φ −0.16 ≤ " − 20
10 ≤ 0.16

= Φ −0.16 − Φ 0.16 ≈ 0.1272
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Application: Distinct Elements
(code this in Pset 6)



Data mining – Stream Model

● In many data mining situations, the data is not known ahead of time.
Examples:   Google queries,  Twitter or Facebook status updates

Youtube video views
● In some ways, best to think of the data as an infinite stream that is 

non-stationary (distribution changes over time)

● Input elements (e.g. Google queries) enter/arrive one at a time.
We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream 
using a limited amount of memory?



Problem Setup

● Input: sequence of ! elements "#, "%, … , "' from a known 
universe ( (e.g., 8-byte integers).

● Goal: perform a computation on the input, in a single left to 
right pass where

○ Elements processed in real time

○ Can’t store the full data. => use minimal amount of storage while 
maintaining working “summary”



What can we compute?

● Some functions are easy:

○ Min

○ Max 

○ Sum

○ Average

32,   12, 14,   32, 7,   12, 32, 7,    32, 12, 4



Today: Counting distinct elements

32,   12, 14,   32, 7,   12, 32, 7,    32, 12, 4

Application: 

You are the content manager at YouTube, and you 
are trying to figure out the distinct view count for a 
video. How do we do that?

Note: A person can view their favorite videos 
several times, but they only count as 1 distinct view!



Other applications

● IP packet streams: How many distinct IP addresses or IP flows 
(source+destination IP, port, protocol)

* Anomaly detection, traffic monitoring
● Search: How many distinct search queries on Google on a certain topic 

yesterday
● Web services: how many distinct users (cookies) searched/browsed a 

certain term/item
* Advertising, marketing trends, etc.



Counting distinct elements

Want to compute number of distinct IDs in the stream.
● Naïve solution: As the data stream comes in, store all distinct 

IDs in a hash table. 
● Space requirement O(m) , where m is the number of distinct IDs

● Consider the number of users of youtube, and the number 
videos on youtube. This is not feasible. 

32,   12, 14,   32, 7,   12, 32, 7,    32, 12, 4
N = # of IDs in the stream = 11,    m = # of distinct IDs in the stream = 5  



Counting distinct elements

Want to compute number of distinct IDs in the stream.
● How to do this without storing all the elements?

Yet another super cool application of probability

32,   12, 14,   32, 7,   12, 32, 7,    32, 12, 4
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Hash function ℎ: # → [0,1]
Assumption: For distinct values in #, the function maps to iid
(independent and identically distributed) Unif(0,1) random numbers. 

Important: if you were to feed in two equivalent elements, the function 
returns the same number. 
• So m distinct elements à m iid uniform *+’s

Counting distinct elements

32,   12, 14,   32, 7,   12, 32, 7,    32, 12, 4

,-,   ,., ,/,  ,-, *0, ,.,  ,-, ,1,   ,-,  *2, *3



Min of IID Uniforms

If !",⋯ , !% are iid Unif(0,1), where do we expect the points to end up? 

0 1

0 1

0 1

x

x x

x x x x

& = 1

& = 2

& = 4
E[min !",⋯ , !0 ] = "

02" =
"
3

E[min !" ] = "
"2" =

"
4

E[min !", !4 ] = "
42" =

"
5

In general,  E[min !",⋯ , !% ] = "
%2"



A super duper clever idea

If !",⋯ , !% are iid Unif(0,1), where do we expect the points to end up? 

In general,  E[min !",⋯ , !+ ] = "
+."

Idea: m = "
/[012 34,⋯,35 ] − 1

Let’s keep track of the value val of min of hash values, 

and estimate 8 as Round "
=>? − 1



The Distinct Elements Algorithm



Stream:  13,   25,   19,   25,   19,   19

Hashes:

Distinct Elements Example

val = infty



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 

Distinct Elements Example

val = infty



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 

Distinct Elements Example

val = 0.51 



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 0.26, 

Distinct Elements Example

val = 0.26 



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 0.26, 0.79, 

Distinct Elements Example

val = 0.26 



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 0.26, 0.79, 0.26, 

Distinct Elements Example

val = 0.26 



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 

Distinct Elements Example

val = 0.26 



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.26 



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.26 

Return
round(1/0.26 - 1) =
round(2.846) = 3 



Diy: Distinct Elements Example II

Stream: 11,   34,   89,  11,  89,   23

Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

val = 0.1

Return= 9 



Problem

val = min (),⋯ , (,
E[/01] = 1

4 + 1

Algorithm: 
Track /01 = min ℎ 7) ,⋯ , ℎ 78 = min((),⋯ , (,)
estimate m = 1/val -1

Var /01 ≈ 1
4 + 1 >

But, val is not E[val]! How far is val from E[val]? 



How can we reduce the variance?

Idea: Repetition to reduce variance! 
Use k independent hash functions ℎ", ℎ$,⋯ ℎ&
Keep track of k independent min hash values 

'()" = min ℎ" ." ,⋯ , ℎ" ./ = min(Y"",⋯ , 23" )
'()$ = min ℎ$ ." ,⋯ , ℎ$ ./ = min(Y"$,⋯ , 23$)

…	…	
'()& = min ℎ& ." ,⋯ , ℎ& ./ = min(Y"7,⋯ , 23&)

'() = "
& Σ9'()9, Estimate : = "

;<= − 1


