
Section 4: Solutions

Review of Main Concepts

• Random Variable (rv): A numeric function X : Ω → R of the outcome.

• Range/Support: The support/range of a random variableX, denoted ΩX , is the set of all possible values that
X can take on.

• Discrete RandomVariable (drv): A random variable taking on a countable (either finite or countably infinite)
number of possible values.

• Probability Mass Function (pmf) for a discrete random variable X: a function pX : ΩX → [0, 1] with
pX (x) = P(X = x) that maps possible values of a discrete random variable to the probability of that value
happening, such that

∑
x pX(x) = 1.

• Cumulative Distribution Function (CDF) for a random variable X: a function FX : R → R with FX (x) =
P(X ≤ x)

• Expectation (expected value, mean, or average): The expectation of a discrete random variable is defined
to be E[X] =

∑
x xpX(x) =

∑
x xP(X = x). The expectation of a function of a discrete random variable g(X)

is E[g(X)] =
∑

x g(x)pX(x).

• Linearity of Expectation: Let X and Y be random variables, and a, b, c∈ R. Then, E[aX+ bY + c] = aE[X]+
bE[Y ] + c. Also, for any random variables X1, . . . , Xn,

E[X1 +X2 + . . .+Xn] = E[X1] + E[X2] + + . . .+ E[Xn].

• Variance: LetX be a random variable and µ = E[X]. The variance ofX is defined to be V ar(X) = E[(X−µ)2].
Notice that since this is an expectation of a non-negative random variable ((X − µ)

2), variance is always non-
negative. With some algebra, we can simplify this to V ar(X) = E[X2]− E[X]2.

• Standard Deviation: Let X be a random variable. We define the standard deviation of X to be the square
root of the variance, and denote it σ =

√
V ar(X).

• Property of Variance: Let a, b ∈ R and let X be a random variable. Then, V ar(aX + b) = a2V ar(X).

• Independence: Random variables X and Y are independent iff

∀x∀y, Pr(X = x ∩ Y = y) = Pr(X = x)Pr(Y = y)

In this case, we have E[XY ] = E[X]E[Y ] (the converse is not necessarily true).

• i.i.d. (independent and identically distributed): Random variablesX1, . . . , Xn are i.i.d. (or iid) iff they are
independent and have the same probability mass function.

• Variance of Independent Variables: If X is independent of Y , Var (X + Y ) = Var (X) + Var(Y ). This
depends on independence, whereas linearity of expectation always holds. Note that this combined with the
above shows that ∀a, b, c ∈ R and if X is independent of Y , V ar(aX + bY + c) = a2V ar(X) + b2V ar(Y ).

1. Identify that Range!

Identify the support/range ΩX of the random variable X, if X is...

(a) The sum of two rolls of a six-sided die. Solution:

X takes on every integer value between the min sum 2, and the max sum 12.
ΩX = {2, 3, ..., 12}
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(b) The number of lottery tickets I buy until I win it. Solution:

X takes on all positive integer values (I may never win the lottery).
ΩX = {1, 2, ...}

(c) The number of heads in n flips of a coin with 0 < P(head) < 1. Solution:

X takes on every integer value between the min number of heads 0, and the max n.
ΩX = {0, 1, ..., n}

(d) The number of heads in n flips of a coin with P(head) = 1. Solution:

Since P(head) = 1, we are guaranteed to get n heads in n flips.
ΩX = {n}

(e) The number of whole minutes I wait at the bus stop for the next bus. Solution:

The number of whole minutes is discrete and will take on values between the minimum waiting time (0,
the bus is here), and the maximum waiting time (∞, the bus never gets here).
ΩX = {0, 1, ...}

2. 3-sided Die

Let the random variable X be the sum of two independent rolls of a fair 3-sided die. (If you are having trouble
imagining what that looks like, you can use a 6-sided die and change the numbers on 3 of its faces.)

(a) What is the probability mass function of X? Solution:

First let us define the range of X. A three sided-die can take on values 1, 2, 3. Since X is the sum of two
rolls, the range of X is ΩX = {2, 3, 4, 5, 6}.

We can then define the pmf of X. To that end, we must define two random variables R1, R2 with R1

being the roll of the first die, and R2 being the roll of the second die. Then, X = R1 + R2. Note that
ΩR1 = ΩR2 = {1, 2, 3}. With that in mind we can find the pmf of X:

pX(k) = Pr(X = k) =
∑

i∈ΩR1

Pr(R1 = i, R2 = k − i)

=
∑

i∈ΩR1

Pr(R1 = i) · Pr(R2 = k − i) (By independence of the rolls)

=
∑

i∈ΩR1

1

3
· pR2(k − i)

=
1

3
(pR2(k − 1) + pR2(k − 2) + pR2(k − 3))

At this point, we can evaluate the pmf of X for each value in the range of X, noting that pR2(k− i) = 0 if
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k − i 6∈ ΩR2, 1/3 otherwise. We get:

pX(k) =



1/9 k = 2

2/9 k = 3

3/9 k = 4

2/9 k = 5

1/9 k = 6

One could also list out the possible values of the first two rolls and use a table to find the marginal pmf of
X by summing up the entries of each row for each k ∈ ΩX .

(b) Find E[X] directly from the definition of expectation. Solution:

E[X] =

6∑
k=2

kpX(k) = 2 · 1
9
+ 3 · 2

9
+ 4 · 3

9
+ 5 · 2

9
+ 6 · 1

9
= 4

(c) Find E[X] again, but this time using linearity of expectation. Solution:

Let R1 be the roll of the first die, and R2 the roll of the second. Then, X = R1 +R2.
By linearity of expectation, we get:

E[X] = E[R1 +R2] = E[R1] + E[R2]

We compute:

E[R1] =
∑

i∈ΩR1

i · Pr(R1 = i) =
∑

i∈ΩR1

i · 1
3
=

1

3
(1 + 2 + 3) = 2

Similarly, E[R2] = 2, since the rolls are independent.

Plugging into our expression for the expectation of X gives us:

E[X] = 2 + 2 = 4

(d) What is V ar(X)? Solution:

We know from the definition of variance that

V ar(X) = E[X2]− E[X]2

We can compute the E[X2] term as follows:

E[X2] =

6∑
x=2

x2pX(x) =
22 · 1 + 32 · 2 + 42 · 3 + 52 · 2 + 62 · 1

9
=

52

3

Plugging this into our variance equation gives us

V ar(X) = E[X2]− E[X]2 =
52

3
− 42 =

4

3
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3. Hungry Washing Machine

You have 10 pairs of socks (so 20 socks in total), with each pair being a different color. You put them in the washing
machine, but the washing machine eats 4 of the socks chosen at random. Every subset of 4 socks is equally probable
to be the subset that gets eaten. Let X be the number of complete pairs of socks that you have left.

(a) What is the range of X, ΩX (the set of possible values it can take on)? What is the probability mass function
of X? Solution:

The washing machine eats 4 socks every time. It can either eat a single sock from 4 pairs of socks, leaving
us with 6 complete pairs, or a single sock from 2 pairs and a matching pair, leaving us with 7 complete
pairs, or 2 pairs of matching socks, leaving us with 8 complete pairs.

ΩX = {6, 7, 8}

We are dealing with a sample space with equally likely outcomes. As such, we can compute use the for-
mula P (E) = |E|

|Ω| . We know that |Ω| =
(
20
4

)
because the washing machine picks a set of 4 socks out of 20

possible socks.

To define the pmf of X, we consider each value in the range of X.

For k = 6, we first pick 4 out of 10 pairs of socks from which we will eat a single sock (
(
10
4

)
ways),

and for each of these 4 pairs we have two socks to pick from (
(
2
1

)4
ways). Using the product rule, we get

|X = 6| =
(
10
4

)
24.

For k = 7, we first pick 1 out of 10 pairs of socks to eat in its entirety (
(
10
1

)
ways), and then 2 out of

the 9 remaining pairs from which we will eat a single sock (
(
9
2

)
ways), and for each of these 2 pairs we

have two socks to pick from (
(
2
1

)2
ways). Using the product rule, we get |X = 7| = 10

(
9
2

)
22.

For k = 8, we pick 2 out of 10 pairs of socks to eat (
(
10
2

)
ways). We get |X = 8| =

(
10
2

)
.

pX(k) =


(104 )2

4

(204 )
k = 6

10(92)2
2

(204 )
k = 7

(102 )
(204 )

k = 8

(b) Find E[X] from the definition of expectation. Solution:

E[X] =
∑

k∈ΩX

k · pX(k) = 6 ·
(
10
4

)
24(

20
4

) + 7 ·
10
(
9
2

)
22(

20
4

) + 8 ·
(
10
2

)(
20
4

) =
120

19

(c) Find E[X] using linearity of expectation. Solution:

For i ∈ [10], let Xi be 1 if pair i survived, and 0 otherwise. Then, X =
∑10

i=1 Xi. But E[Xi] = 1 · Pr(Xi =

1)+ 0 · Pr(Xi = 0) = Pr(Xi = 1) =
(184 )
(204 )

, where the numerator indicates the number of ways of choosing 4

out the 18 remaining socks (we spare our chosen pair i). Hence,
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E[X] = E[
10∑
i=1

Xi] =

10∑
i=1

E[Xi] =

10∑
i=1

(
18
4

)(
20
4

) = 10

(
18
4

)(
20
4

) =
120

19

(d) Which way was easier? Doing both (a) and (b), or just (c)? Solution:

Part (c) is was probably much easier. In this problem, you may have found part (a) and (b) easier, because
there were only 3 possible values in the range of X. However, in general computing the probability mass
function of complicated random variables (ones with hundreds of elements in their range) can be very
difficult. Often it is much easier to use linearity of expectation and compute the probability mass function
of simpler random variables.

4. Hat Check

At a reception, n people give their hats to a hat-check person. When they leave, the hat-check person gives each of
them a hat chosen at random from the hats that remain. What is the expected number of people who get their own
hats back? (Notice that the hats returned to two people are not independent events: if a certain hat is returned to
one person, it cannot also be returned to the other person.)

Solution:

LetX be the number of people who get their hats back. For i ∈ [n], letXi be 1 if person i gets their hat back, and
0 otherwise. Then, E[Xi] = Pr(Xi = 1) = |E|

|Ω| . The sample space is all possible distributions of hats among the
n people, and the event of interest E is the subset of the sample space where person i has their own hat. There
are n! ways to distribute the n hats among the n people. This is because the first person might have gotten 1
out of n possible hats; for each hat the first person got, the second person could get n− 1 possible hats; and so
on. The number of ways person i can get their hat back is (n− 1)!. This is because we are essentially removing
person i and hat i from the pool of people/hats, and counting the permutations of the n− 1 remaining people.

Thus, Pr(Xi = 1) = (n−1)!
n! = 1

n . Since X =
∑n

i=1 Xi, we have

E[X] = E[
n∑

i=1

Xi] =

n∑
i=1

E[Xi] =

n∑
i=1

1

n
= n · 1

n
= 1

5. Frogger

A frog starts on a 1-dimensional number line at 0. At each second, independently, the frog takes a unit step right
with probability p1, to the left with probability p2, and doesn’t move with probability p3, where p1 + p2 + p3 = 1.
After 2 seconds, let X be the location of the frog.

(a) Find pX(k), the probability mass function for X. Solution:

Let L be a left step, R be a right step, and N be no step.

The range of X is {−2,−1, 0, 1, 2}. We can compute pX(−2) = Pr(X = −2) = Pr(LL) = p22, pX(−1) =
Pr(X = −1) = Pr(LN ∪ NL) = 2p2p3, and pX(0) = Pr(X = 0) = Pr(NN ∪ LR ∪ RL) = p23 + 2p1p2.
Similarly for pX(1) and pX(2).
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pX(k) =



p22 k = −2

2p2p3 k = −1

p23 + 2p1p2 k = 0

2p1p3 k = 1

p21 k = 2

(b) Compute E[X] from the definition.

Solution:

E[X] = (−2)(p22) + (−1)(2p2p3) + (0)(p23 + 2p1p2) + (1)(2p1p3) + (2)(p21) = 2(p1 − p2)

(c) Compute E[X] again, but using linearity of expectation. Solution:

Let Y be the amount you moved on the first step (either −1, 0, 1), and Z the amount you moved on the
second step. Then, E[Y ] = E[Z] = (1)(p1) + (0)(p3) + (−1)(p2) = p1 − p2.

Then X = Y + Z and E[X] = E[Y + Z] = E[Y ] + E[Z] = 2(p1 − p2)

6. Balls in Bins

Let X be the number of bins that remain empty when m balls are distributed into n bins randomly and indepen-
dently. For each ball, each bin has an equal probability of being chosen. (Notice that two bins being empty are not
independent events: if one bin is empty, that decreases the probability that the second bin will also be empty. This
is particularly obvious when n = 2 and m > 0.) Find E[X]. Solution:

For i ∈ [n], let Xi be 1 if bin i is empty, and 0 otherwise. Then, X =
∑n

i=1 Xi. We first compute E[Xi] =
1 · Pr(Xi = 1) + 0 · Pr(Xi = 0) = Pr(Xi = 1) = (n−1

n )m. Indeed, we are assuming multiple balls can go in the
same bin. As such, when computing P (Xi = 1), given that bin i is empty, we remove it from the pool of possible
bins to pick from, leaving us with n − 1 bins out of a total of n bins in which we can place balls. Since we are
distributing m balls over the n bins, the event that bin i remains empty occurs with probability

(
n−1
n

)m
. Hence,

by linearity of expectation:

E[X] = E[
n∑

i=1

Xi] =

n∑
i=1

E[Xi] = n ·
(
n− 1

n

)m

7. Fair Game?

You flip a fair coin independently and count the number of flips until the first tail, including that tail flip in the
count. If the count is n, you receive 2n dollars. What is the expected amount you will receive? How much would
you be willing to pay at the start to play this game? Solution:

The expected amount is∞. LetN be the number of flips until the first tail, so pN (n) = 1
2n for n ∈ N (independent

flips of a fair coin; N is the range ofN and refers to the set of natural numbers). We have E[2N ] =
∑∞

n=1 2
n 1
2n =∑∞

n=1 1 = ∞. In theory, you should be willing to pay any finite amount of money to play this game, but I admit
I would be nervous to pay a lot. For instance, if you pay $1000, you will lose money unless the first 9 flips are
all heads. With high probability you will lose money, and with low probability you will win a lot of money.
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8. Symmetric Difference

Suppose A and B are random, independent (possibly empty) subsets of {1, 2, . . . , n}, where each subset is equally
likely to be chosen as A or B. Consider A∆B = (A∩BC)∪ (B∩AC) = (A∪B)∩ (AC ∪BC), i.e., the set containing
elements that are in exactly one of A and B. Let X be the random variable that is the size of A∆B. What is E[X]?
Solution:

For i = 1, 2, . . . , n, let Xi be the indicator of whether i ∈ A∆B. Then E[Xi] = Pr(Xi = 1) = 1
2 (every subset of

1, 2, .., n either contains i or it does not), and X =
∑n

i=1 Xi, so

E[X] = E[
n∑

i=1

Xi] =
n

2

.

9. Practice

(a) Let X be a random variable with pX(k) = ck for k ∈ {1, . . . , 5} = ΩX , and 0 otherwise. Find the value of c
that makes X follow a valid probability distribution and compute its mean and variance (E[X] and V ar(X)).

(b) Let X be any random variable with mean E[X] = µ and variance V ar(X) = σ2. Find the mean and variance

of Z =
X − µ

σ
. (When you’re done, you’ll see why we call this a “standardized” version of X!)

(c) LetX,Y be independent random variables. Find themean and variance ofX−3Y−5 in terms ofE[X], E[Y ], V ar(X),
and V ar(Y ).

(d) Let X1, . . . , Xn be independent and identically distributed (iid) random variables each with mean µ and vari-
ance σ2. The sample mean is X̄ = 1

n

∑n
i=1 Xi. Find the mean and variance of X̄. If you use the independence

assumption anywhere, explicitly label at which step(s) it is necessary for your equalities to be true.

Solution:

(a) For X to follow a valid probability distribution, we must have
∑

k∈ΩX
pX(k) = 1. We can solve for c so

that the equality holds. We know:∑
k∈ΩX

pX(k) =
∑

k∈ΩX

ck = c
∑

k∈ΩX

k) = c · (1 + 2 + 3 + 4 + 5) = 15c

So for the normalization of the pmf of X to hold, we must choose c = 1/15.
We can now use the definition of expectation:

E[X] = 1 · 1

15
+ 2 · 2

15
+ 3 · 3

15
+ 4 · 4

15
+ 5 · 5

15
= 55/15 ≈ 3.667

And compute E[X] as follows:

E[X2] = 12 · 1

15
+ 22 · 2

15
+ 32 · 3

15
+ 42 · 4

15
+ 52 · 5

15
= 225/15 = 15

And the variance of X:

V ar(X) = E[X2]− E2[X] = 15− (55/15)2 =
153 − 552

15
=

350

225
=

14

9
≈ 1.556

(b) We know that E[aX] = a · E[X] for some constant a, and that E[X + b] = E[X] + b for some constant b.
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As such, we can compute the expectation of the standardized version of X, knowing that E[X] = µ:

E[Z] = E

[
X − µ

σ

]
=

1

σ
(E[X − µ]) =

1

σ
(E[X]− µ) = 0

For the variance, we know that V ar(aX+b) = a2V ar(X). With that in mind, knowing that V ar(X) = σ2,
we can write:

V ar(Z) = V ar

(
X − µ

σ

)
=

1

σ2
V ar(X) = 1

(c) Using the linearity of expectation, we can write:

E[X − 3Y − 5] = E[X]− 3E[Y ]− 5

We also know that the variance of a sum of independent random variables A and B is the sum of their
variances, so that V ar(A+B) = V ar(A) + V ar(B). In our case, we have A = X, and B = −3Y . We get:

V ar(X − 3Y − 5) = V ar(X) + V ar(−3Y ) = V ar(X) + 9V ar(Y )

(d) Using linearity of expectation,

E[X] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] =
1

n
nµ = µ

V ar(X) = V ar

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

V ar(Xi) =
1

n2
nσ2 =

σ2

n

In the calculation for the variance, we used the independence of the Xi’s.

10. Coin Flipping

Suppose we have a coin with probability p of heads. Suppose we flip this coin until we flip a head for the first time.
LetX be the number of times we flip the coin up to and including the first head. What is Pr(X = k), for k = 1, 2, . . .?
Verify that

∑∞
k=1 Pr(X = k) = 1, as it should. (You may use the fact that

∑∞
j=0 a

j = 1
1−a for |a| < 1). Solution:

Pr(X = k) = (1− p)k−1p

If the kth flip is our first head, the first k − 1 must be tails (each with probability (1 − p), and the kth flip must
be a head with probability p.

∞∑
k=1

Pr(X = k) =

∞∑
k=1

(1− p)k−1p = p

∞∑
j=0

(1− p)j =
p

1− (1− p)
= 1

(We set j = k − 1 so our summation’s lower bound k = 1 turned into j = 0).
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11. More Coin Flipping ...

Suppose we have a coin with probability p of heads. Suppose we flip this coin n times independently. Let X be
the number of heads that we observe. What is Pr(X = k), for k = 0, . . . n? Verify that

∑n
k=0 Pr(X = k) = 1, as it

should. Solution:

Pr(X = k) =

(
n

k

)
pk(1− p)n−k

For a given sequence with exactly k heads, the probability of that sequence is pk(1− p)n−k. However, there are(
n
k

)
such sequences, so the probability of exactly k heads is

(
n
k

)
pk(1− p)n−k.

n∑
k=0

Pr(X = k) =

n∑
k=0

(
n

k

)
pk(1− p)n−k = (p+ (1− p))n = 1

The middle equality uses the Binomial Theorem.
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