Section 8: Solutions

Review of Main Concepts

- Realization/Sample: A realization/sample x of a random variable X is the value that is actually observed.
- Likelihood: Let $x_{1}, \ldots x_{n}$ be iid realizations from probability mass function $p_{X}(\mathrm{x} ; \theta)$ (if X discrete) or density $f_{X}(\mathrm{x} ; \theta)$ (if X continuous), where θ is a parameter (or a vector of parameters). We define the likelihood function to be the probability of seeing the data.
If X is discrete:

$$
L\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} p_{X}\left(x_{i} \mid \theta\right)
$$

If X is continuous:

$$
L\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f_{X}\left(x_{i} \mid \theta\right)
$$

- Maximum Likelihood Estimator (MLE): We denote the MLE of θ as $\hat{\theta}_{\text {MLE }}$ or simply $\hat{\theta}$, the parameter (or vector of parameters) that maximizes the likelihood function (probability of seeing the data).

$$
\hat{\theta}_{\text {MLE }}=\arg \max _{\theta} L\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\arg \max _{\theta} \ln L\left(x_{1}, \ldots, x_{n} \mid \theta\right)
$$

- Log-Likelihood: We define the log-likelihood as the natural logarithm of the likelihood function. Since the logarithm is a strictly increasing function, the value of θ that maximizes the likelihood will be exactly the same as the value that maximizes the log-likelihood.
If X is discrete:

$$
\ln L\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\sum_{i=1}^{n} \ln p_{X}\left(x_{i} \mid \theta\right)
$$

If X is continuous:

$$
\ln L\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\sum_{i=1}^{n} \ln f_{X}\left(x_{i} \mid \theta\right)
$$

- Bias: The bias of an estimator $\hat{\theta}$ for a true parameter θ is defined as $\operatorname{Bias}(\hat{\theta}, \theta)=\mathbb{E}[\hat{\theta}]-\theta$. An estimator $\hat{\theta}$ of θ is unbiased iff $\operatorname{Bias}(\hat{\theta}, \theta)=0$, or equivalently $\mathbb{E}[\hat{\theta}]=\theta$.
- Steps to find the maximum likelihood estimator, $\hat{\theta}$:
(a) Find the likelihood and log-likelihood of the data.
(b) Take the derivative of the log-likelihood and set it to 0 to find a candidate for the MLE, $\hat{\theta}$.
(c) Take the second derivative and show that $\hat{\theta}$ indeed is a maximizer, that $\frac{\partial^{2} L}{\partial \theta^{2}}<0$ at $\hat{\theta}$. Also ensure that it is the global maximizer: check points of non-differentiability and boundary values.

1. Mystery Dish!

A fancy new restaurant has opened up which features only 4 dishes. The unique feature of dining here is that they will serve you any of the four dishes randomly according to the following probability distribution: give dish A with probability 0.5 , dish B with probability θ, dish C with probability 2θ, and dish D with probability $0.5-3 \theta$
Each diner is served a dish independently. Let x_{A} be the number of people who received dish A, x_{B} the number of people who received dish B, etc, where $x_{A}+x_{B}+x_{C}+x_{D}=n$. Find the MLE for θ, $\hat{\theta}$. Solution:

The data tells us, for each diner in the restaurant, what their dish was. We begin by computing the likelihood of seeing the given data given our parameter θ. Because each diner is assigned a dish independently, the likelihood is equal to the product over diners of the chance they got the particular dish they got, which gives us:

$$
L(x \mid \theta)=0.5^{x_{A}} \theta^{x_{B}}(2 \theta)^{x_{C}}(0.5-3 \theta)^{x_{D}}
$$

From there, we just use the MLE process to get the log-likelihood, take the first derivative, set it equal to 0 , and solve for $\hat{\theta}$.

$$
\begin{gathered}
\ln L(x \mid \theta)=x_{A} \ln (0.5)+x_{B} \ln (\theta)+x_{C} \ln (2 \theta)+x_{D} \ln (0.5-3 \theta) \\
\frac{\partial}{\partial \theta} \ln L(x \mid \theta)=\frac{x_{B}}{\theta}+\frac{x_{C}}{\theta}-\frac{3 x_{D}}{0.5-3 \theta} \\
\frac{x_{B}}{\hat{\theta}}+\frac{x_{C}}{\hat{\theta}}-\frac{3 x_{D}}{0.5-3 \hat{\theta}}=0
\end{gathered}
$$

Solving yields $\hat{\theta}=\frac{x_{B}+x_{C}}{6\left(x_{B}+x_{C}+x_{D}\right)}$.

2. A Red Poisson

Suppose that Klee has a collection of i.i.d. samples, x_{1}, \ldots, x_{n}, from a Poisson (θ) random variable, where θ is unknown. Find the MLE of θ. Solution:

Because each Poisson RV is i.i.d., the likelihood of seeing that data is just the PMF of the Poisson distribution multiplied together for every x_{i}. From there, take the log-likelihood, then the first derivative, set it equal to 0 and solve for for $\hat{\theta}$.

$$
\begin{aligned}
L\left(x_{1}, \ldots, x_{n} \mid \theta\right) & =\prod_{i=1}^{n} e^{-\theta} \frac{\theta^{x_{i}}}{x_{i}!} \\
\ln L\left(x_{1}, \ldots, x_{n} \mid \theta\right) & =\sum_{i=1}^{n}\left[-\theta-\ln \left(x_{i}!\right)+x_{i} \ln (\theta)\right] \\
\frac{\partial}{\partial \theta} \ln L\left(x_{1}, \ldots, x_{n} \mid \theta\right) & =\sum_{i=1}^{n}\left[-1+\frac{x_{i}}{\theta}\right] \\
-n+\frac{\sum_{i=1}^{n} x_{i}}{\hat{\theta}} & =0 \\
\hat{\theta}=\frac{\sum_{i=1}^{n} x_{i}}{n} &
\end{aligned}
$$

3. Independent Shreds, You Say?

Jean is given 100 independent samples $x_{1}, x_{2}, \ldots, x_{100}$ from $\operatorname{Bernoulli}(\theta)$, where θ is unknown. (Each sample is either a 0 or a 1). These 100 samples sum to 30 . She would like to estimate the distribution's parameter θ. Give all answers to 3 significant digits.
(a) What is the maximum likelihood estimator $\hat{\theta}$ of θ ? Solution:

Note that $\Sigma_{i \in[n]} x_{i}=30$, as given in the problem spec. Therefore, there are 301 s and 700 s . (Note that they come in some specific order.) Therefore, we can setup L as follows, because there is a θ chance of getting a 1 , and a $(1-\theta)$ chance of getting a 0 and they are each i.i.d. From there, take the log-likelihood,
then the first derivative, set it equal to 0 and solve for for $\hat{\theta}$.

$$
\begin{aligned}
L\left(x_{1}, \ldots, x_{n} \mid \theta\right) & =(1-\theta)^{70} \theta^{30} \\
\ln L\left(x_{1}, \ldots, x_{n} \mid \theta\right) & =70 \ln (1-\theta)+30 \ln \theta \\
\frac{\partial}{\partial \theta} \ln L\left(x_{1}, \ldots, x_{n} \mid \theta\right) & =-\frac{70}{1-\theta}+\frac{30}{\theta} \\
-\frac{70}{1-\hat{\theta}}+\frac{30}{\hat{\theta}} & =0 \\
\frac{30}{\hat{\theta}} & =\frac{70}{1-\hat{\theta}} \\
30-30 \hat{\theta} & =70 \hat{\theta} \\
\hat{\theta} & =\frac{30}{100}
\end{aligned}
$$

(b) Is $\hat{\theta}$ an unbiased estimator of θ ? Solution:

An estimator is unbiased if the expectation of the estimator is equal to the original parameter, i.e.: $E[\hat{\theta}]=\theta$. Setting up the expectation of our estimator and plugging it in for the generic case, we get the following, which we can then reduce with linearity of expectation:

$$
\begin{aligned}
\mathbb{E}[\hat{\theta}] & =\mathbb{E}\left[\frac{1}{100} \sum_{i=1}^{100} X_{i}\right] \\
& =\frac{1}{100} \sum_{i=1}^{100} \mathbb{E}\left[X_{i}\right] \\
& =\frac{1}{100} \cdot 100 \theta=\theta
\end{aligned}
$$

so it is unbiased.

4. Y Me ?

Let $y_{1}, y_{2}, \ldots y_{n}$ be i.i.d. samples of a random variable with density function

$$
f_{Y}(y \mid \theta)=\frac{1}{2 \theta} \exp \left(-\frac{|y|}{\theta}\right)
$$

Find the MLE for θ in terms of $\left|y_{i}\right|$ and n. Solution:
Since the samples are i.i.d., the likelihood of seeing n samples of them is just their PDFs multiplied together.

From there, take the log-likelihood, then the first derivative, set it equal to 0 and solve for for $\hat{\theta}$.

$$
\begin{aligned}
L\left(y_{1}, \ldots, y_{n} \mid \theta\right) & =\prod_{i=1}^{n} \frac{1}{2 \theta} \exp \left(-\frac{\left|y_{i}\right|}{\theta}\right) \\
\ln L\left(y_{1}, \ldots, y_{n} \mid \theta\right) & =\sum_{i=1}^{n}\left[-\ln 2-\ln \theta-\frac{\left|y_{i}\right|}{\theta}\right] \\
\frac{\partial}{\partial \theta} \ln L\left(y_{1}, \ldots, y_{n} \mid \theta\right) & =\sum_{i=1}^{n}\left[-\frac{1}{\theta}+\frac{\left|y_{i}\right|}{\theta^{2}}\right] \\
\sum_{i=1}^{n}\left[-\frac{1}{\hat{\theta}}+\frac{\left|y_{i}\right|}{\hat{\theta}^{2}}\right] & =0 \\
-\frac{n}{\hat{\theta}}+\frac{\Sigma_{i=1}^{n}\left|y_{i}\right|}{\hat{\theta}^{2}} & =0 \\
\hat{\theta}=\frac{\sum_{i=1}^{n}\left|y_{i}\right|}{n} &
\end{aligned}
$$

5. A biased estimator

In class, we showed that the maximum likelihood estimate of the variance θ_{2} of a normal distribution (when both the true mean μ and true variance σ^{2} are unknown) is what's called the population variance. That is

$$
\left.\hat{\theta}_{2}=\left(\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\theta}_{1}\right)^{2}\right)\right)
$$

where $\hat{\theta}_{1}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ is the MLE of the mean. Is $\hat{\theta}_{2}$ unbiased?

Solution:

Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Then

$$
E\left(\hat{\theta}_{2}\right)=E\left(\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right)=E\left(\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}^{2}-2 X_{i} \bar{X}+\bar{X}^{2}\right)\right)
$$

which by linearity of expectation (and distributing the sum) is

$$
\begin{align*}
& =\frac{1}{n} \sum_{i=1}^{n} E\left(X_{i}^{2}\right)-E\left(\frac{2}{n} \bar{X} \sum_{i=1}^{n} X_{i}\right)+E\left(\bar{X}^{2}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} E\left(X_{i}^{2}\right)-2 E\left(\bar{X}^{2}\right)+E\left(\bar{X}^{2}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} E\left(X_{i}^{2}\right)-E\left(\bar{X}^{2}\right) . \tag{**}
\end{align*}
$$

We know that for any random variable Y, since $\operatorname{Var}(Y)=E\left(Y^{2}\right)-(E(Y))^{2}$ it holds that

$$
E\left(Y^{2}\right)=\operatorname{Var}(Y)+(E(Y))^{2}
$$

Also, we have $E\left(X_{i}\right)=\mu, \operatorname{Var}\left(X_{i}\right)=\sigma^{2} \forall i$ and $E(\bar{X})=\mu, \operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}$. Combining these facts, we get

$$
E\left(X_{i}^{2}\right)=\sigma^{2}+\mu^{2} \forall i \quad \text { and } \quad E\left(\bar{X}^{2}\right)=\frac{\sigma^{2}}{n}+\mu^{2}
$$

Substituting these equations into (**) we get

$$
\begin{aligned}
\left.E\left(\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right)\right) & =\frac{1}{n} \sum_{i=1}^{n} E\left(X_{i}^{2}\right)-E\left(\bar{X}^{2}\right)=\sigma^{2}+\mu^{2}-\left(\frac{\sigma^{2}}{n}+\mu^{2}\right) \\
& =\left(1-\frac{1}{n}\right) \sigma^{2}
\end{aligned}
$$

Thus $\hat{\theta}_{2}$ is not unbiased.

