Section 8: Solutions

Review of Main Concepts

- Realization/Sample: A realization/sample x of a random variable X is the value that is actually observed.
- Likelihood: Let $x_1, \ldots x_n$ be iid realizations from probability mass function $p_X(\mathbf{x};\theta)$ (if X discrete) or density $f_X(\mathbf{x};\theta)$ (if X continuous), where θ is a parameter (or a vector of parameters). We define the likelihood function to be the probability of seeing the data.

If *X* is discrete:

$$L(x_1, \dots, x_n \mid \theta) = \prod_{i=1}^n p_X(x_i \mid \theta)$$

If X is continuous:

$$L(x_1, \dots, x_n \mid \theta) = \prod_{i=1}^n f_X(x_i \mid \theta)$$

• Maximum Likelihood Estimator (MLE): We denote the MLE of θ as $\hat{\theta}_{MLE}$ or simply $\hat{\theta}$, the parameter (or vector of parameters) that maximizes the likelihood function (probability of seeing the data).

$$\hat{\theta}_{\mathrm{MLE}} = \arg\max_{\theta} L\left(x_{1}, \ldots, x_{n} \mid \, \theta\right) = \arg\max_{\theta} \ln L\left(x_{1}, \ldots, x_{n} \mid \, \theta\right)$$

• **Log-Likelihood**: We define the log-likelihood as the natural logarithm of the likelihood function. Since the logarithm is a strictly increasing function, the value of θ that maximizes the likelihood will be exactly the same as the value that maximizes the log-likelihood.

If *X* is discrete:

$$\ln L(x_1, \dots, x_n \mid \theta) = \sum_{i=1}^{n} \ln p_X(x_i \mid \theta)$$

If *X* is continuous:

$$\ln L(x_1, \dots, x_n \mid \theta) = \sum_{i=1}^n \ln f_X(x_i \mid \theta)$$

- **Bias**: The bias of an estimator $\hat{\theta}$ for a true parameter θ is defined as Bias $(\hat{\theta}, \theta) = \mathbb{E}[\hat{\theta}] \theta$. An estimator $\hat{\theta}$ of θ is unbiased iff Bias $(\hat{\theta}, \theta) = 0$, or equivalently $\mathbb{E}[\hat{\theta}] = \theta$.
- Steps to find the maximum likelihood estimator, $\hat{\theta}$:
 - (a) Find the likelihood and log-likelihood of the data.
 - (b) Take the derivative of the log-likelihood and set it to 0 to find a candidate for the MLE, $\hat{\theta}$.
 - (c) Take the second derivative and show that $\hat{\theta}$ indeed is a maximizer, that $\frac{\partial^2 L}{\partial \theta^2} < 0$ at $\hat{\theta}$. Also ensure that it is the global maximizer: check points of non-differentiability and boundary values.

1. Mystery Dish!

A fancy new restaurant has opened up which features only 4 dishes. The unique feature of dining here is that they will serve you any of the four dishes randomly according to the following probability distribution: give dish A with probability 0.5, dish B with probability θ , dish C with probability 2θ , and dish D with probability $0.5 - 3\theta$

Each diner is served a dish independently. Let x_A be the number of people who received dish A, x_B the number of people who received dish B, etc, where $x_A + x_B + x_C + x_D = n$. Find the MLE for θ , $\hat{\theta}$. **Solution:**

The data tells us, for each diner in the restaurant, what their dish was. We begin by computing the likelihood of seeing the given data given our parameter θ . Because each diner is assigned a dish independently, the likelihood is equal to the product over diners of the chance they got the particular dish they got, which gives us:

$$L(x|\theta) = 0.5^{x_A} \theta^{x_B} (2\theta)^{x_C} (0.5 - 3\theta)^{x_D}$$

From there, we just use the MLE process to get the log-likelihood, take the first derivative, set it equal to 0, and solve for $\hat{\theta}$.

$$\begin{split} \ln L(x|\theta) &= x_A \ln(0.5) + x_B \ln(\theta) + x_C \ln(2\theta) + x_D \ln(0.5 - 3\theta) \\ &\frac{\partial}{\partial \theta} \ln L(x|\theta) = \frac{x_B}{\theta} + \frac{x_C}{\theta} - \frac{3x_D}{0.5 - 3\theta} \\ &\frac{x_B}{\hat{\theta}} + \frac{x_C}{\hat{\theta}} - \frac{3x_D}{0.5 - 3\hat{\theta}} = 0 \end{split}$$

Solving yields $\hat{\theta} = \frac{x_B + x_C}{6(x_B + x_C + x_D)}$.

2. A Red Poisson

Suppose that Klee has a collection of i.i.d. samples, x_1, \ldots, x_n , from a Poisson(θ) random variable, where θ is unknown. Find the MLE of θ . **Solution:**

Because each Poisson RV is i.i.d., the likelihood of seeing that data is just the PMF of the Poisson distribution multiplied together for every x_i . From there, take the log-likelihood, then the first derivative, set it equal to 0 and solve for for $\hat{\theta}$.

$$L(x_1, \dots, x_n \mid \theta) = \prod_{i=1}^n e^{-\theta} \frac{\theta^{x_i}}{x_i!}$$

$$\ln L(x_1, \dots, x_n \mid \theta) = \sum_{i=1}^n \left[-\theta - \ln(x_i!) + x_i \ln(\theta) \right]$$

$$\frac{\partial}{\partial \theta} \ln L(x_1, \dots, x_n \mid \theta) = \sum_{i=1}^n \left[-1 + \frac{x_i}{\theta} \right]$$

$$-n + \frac{\sum_{i=1}^n x_i}{\hat{\theta}} = 0$$

$$\hat{\theta} = \frac{\sum_{i=1}^n x_i}{n}$$

3. Independent Shreds, You Say?

Jean is given 100 independent samples x_1, x_2, \dots, x_{100} from Bernoulli(θ), where θ is unknown. (Each sample is either a 0 or a 1). These 100 samples sum to 30. She would like to estimate the distribution's parameter θ . Give all answers to 3 significant digits.

(a) What is the maximum likelihood estimator $\hat{\theta}$ of θ ? **Solution:**

Note that $\Sigma_{i \in [n]} x_i = 30$, as given in the problem spec. Therefore, there are 30 **1**s and 70 **0**s. (Note that they come in some specific order.) Therefore, we can setup L as follows, because there is a θ chance of getting a 1, and a $(1 - \theta)$ chance of getting a 0 and they are each i.i.d. From there, take the log-likelihood,

then the first derivative, set it equal to 0 and solve for for $\hat{\theta}$.

$$L(x_1, \dots, x_n \mid \theta) = (1 - \theta)^{70} \theta^{30}$$

$$\ln L(x_1, \dots, x_n \mid \theta) = 70 \ln (1 - \theta) + 30 \ln \theta$$

$$\frac{\partial}{\partial \theta} \ln L(x_1, \dots, x_n \mid \theta) = -\frac{70}{1 - \theta} + \frac{30}{\theta}$$

$$-\frac{70}{1 - \hat{\theta}} + \frac{30}{\hat{\theta}} = 0$$

$$\frac{30}{\hat{\theta}} = \frac{70}{1 - \hat{\theta}}$$

$$30 - 30\hat{\theta} = 70\hat{\theta}$$

$$\hat{\theta} = \frac{30}{100}$$

(b) Is $\hat{\theta}$ an unbiased estimator of θ ? **Solution:**

An estimator is unbiased if the expectation of the estimator is equal to the original parameter, i.e.: $E[\hat{\theta}] = \theta$. Setting up the expectation of our estimator and plugging it in for the generic case, we get the following, which we can then reduce with linearity of expectation:

$$\mathbb{E}[\hat{\theta}] = \mathbb{E}\left[\frac{1}{100} \sum_{i=1}^{100} X_i\right]$$
$$= \frac{1}{100} \sum_{i=1}^{100} \mathbb{E}\left[X_i\right]$$
$$= \frac{1}{100} \cdot 100\theta = \theta.$$

so it is unbiased.

4. Y Me?

Let $y_1, y_2, ... y_n$ be i.i.d. samples of a random variable with density function

$$f_Y(y|\theta) = \frac{1}{2\theta} \exp\left(-\frac{|y|}{\theta}\right)$$

.

Find the MLE for θ in terms of $|y_i|$ and n. Solution:

Since the samples are i.i.d., the likelihood of seeing n samples of them is just their PDFs multiplied together.

From there, take the log-likelihood, then the first derivative, set it equal to 0 and solve for for $\hat{\theta}$.

$$L(y_1, \dots, y_n \mid \theta) = \prod_{i=1}^n \frac{1}{2\theta} \exp(-\frac{|y_i|}{\theta})$$

$$\ln L(y_1, \dots, y_n \mid \theta) = \sum_{i=1}^n \left[-\ln 2 - \ln \theta - \frac{|y_i|}{\theta} \right]$$

$$\frac{\partial}{\partial \theta} \ln L(y_1, \dots, y_n \mid \theta) = \sum_{i=1}^n \left[-\frac{1}{\theta} + \frac{|y_i|}{\theta^2} \right]$$

$$\sum_{i=1}^n \left[-\frac{1}{\hat{\theta}} + \frac{|y_i|}{\hat{\theta}^2} \right] = 0$$

$$-\frac{n}{\hat{\theta}} + \frac{\sum_{i=1}^n |y_i|}{\hat{\theta}^2} = 0$$

$$\hat{\theta} = \frac{\sum_{i=1}^n |y_i|}{n}$$

5. A biased estimator

In class, we showed that the maximum likelihood estimate of the variance θ_2 of a normal distribution (when both the true mean μ and true variance σ^2 are unknown) is what's called the *population variance*. That is

$$\hat{\theta}_2 = \left(\frac{1}{n} \sum_{i=1}^n (x_i - \hat{\theta}_1)^2\right)$$

where $\hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^n x_i$ is the MLE of the mean. Is $\hat{\theta}_2$ unbiased?

Solution:

Let $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Then

$$E(\hat{\theta}_2) = E\left(\frac{1}{n}\sum_{i=1}^n (X_i - \overline{X})^2\right) = E\left(\frac{1}{n}\sum_{i=1}^n (X_i^2 - 2X_i\overline{X} + \overline{X}^2)\right)$$

which by linearity of expectation (and distributing the sum) is

$$= \frac{1}{n} \sum_{i=1}^{n} E(X_i^2) - E\left(\frac{2}{n} \overline{X} \sum_{i=1}^{n} X_i\right) + E(\overline{X}^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} E(X_i^2) - 2E(\overline{X}^2) + E(\overline{X}^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} E(X_i^2) - E(\overline{X}^2). \quad (**)$$

We know that for any random variable Y, since $Var(Y) = E(Y^2) - (E(Y))^2$ it holds that

$$E(Y^2) = Var(Y) + (E(Y))^2.$$

Also, we have $E(X_i) = \mu$, $Var(X_i) = \sigma^2 \ \forall i$ and $E(\overline{X}) = \mu$, $Var(\overline{X}) = \frac{\sigma^2}{n}$. Combining these facts, we get

$$E(X_i^2) = \sigma^2 + \mu^2 \ \ \forall i \quad \ \ \text{and} \quad \ E(\overline{X}^2) = \frac{\sigma^2}{n} + \mu^2.$$

Substituting these equations into (**) we get

$$E\left(\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X})^2\right) = \frac{1}{n}\sum_{i=1}^{n}E(X_i^2) - E(\overline{X}^2) = \sigma^2 + \mu^2 - \left(\frac{\sigma^2}{n} + \mu^2\right)$$
$$= \left(1 - \frac{1}{n}\right)\sigma^2.$$

Thus $\hat{\theta}_2$ is not unbiased.