
Section 8: Maximum Likelihood Estimation

Review of Main Concepts

• Realization/Sample: A realization/sample x of a random variable X is the value that is actually observed.

• Likelihood: Let x1, . . . xn be iid realizations from probability mass function pX(x ; θ) (ifX discrete) or density
fX(x ; θ) (if X continuous), where θ is a parameter (or a vector of parameters). We define the likelihood
function to be the probability of seeing the data.

If X is discrete:

L (x1, . . . , xn | θ) =
n∏

i=1

pX (xi | θ)

If X is continuous:

L (x1, . . . , xn | θ) =
n∏

i=1

fX (xi | θ)

• Maximum Likelihood Estimator (MLE): We denote the MLE of θ as θ̂MLE or simply θ̂, the parameter (or
vector of parameters) that maximizes the likelihood function (probability of seeing the data).

θ̂MLE = argmax
θ

L (x1, . . . , xn | θ) = argmax
θ

lnL (x1, . . . , xn | θ)

• Log-Likelihood: We define the log-likelihood as the natural logarithm of the likelihood function. Since the
logarithm is a strictly increasing function, the value of θ that maximizes the likelihood will be exactly the same
as the value that maximizes the log-likelihood.

If X is discrete:

lnL (x1, . . . , xn | θ) =
n∑

i=1

ln pX (xi | θ)

If X is continuous:

lnL (x1, . . . , xn | θ) =
n∑

i=1

ln fX (xi | θ)

• Bias: The bias of an estimator θ̂ for a true parameter θ is defined as Bias
(
θ̂, θ
)
= E[θ̂]− θ. An estimator θ̂ of

θ is unbiased iff Bias
(
θ̂, θ
)
= 0, or equivalently E[θ̂] = θ.

• Steps to find the maximum likelihood estimator, θ̂:

(a) Find the likelihood and log-likelihood of the data.

(b) Take the derivative of the log-likelihood and set it to 0 to find a candidate for the MLE, θ̂.

(c) Take the second derivative and show that θ̂ indeed is a maximizer, that ∂2L
∂θ2 < 0 at θ̂. Also ensure that it

is the global maximizer: check points of non-differentiability and boundary values.

1. Mystery Dish!

A fancy new restaurant has opened up which features only 4 dishes. The unique feature of dining here is that they
will serve you any of the four dishes randomly according to the following probability distribution: give dish A with
probability 0.5, dish B with probability θ, dish C with probability 2θ, and dish D with probability 0.5− 3θ

Each diner is served a dish independently. Let xA be the number of people who received dish A, xB the number of
people who received dish B, etc, where xA + xB + xC + xD = n. Find the MLE for θ, θ̂.
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2. A Red Poisson

Suppose that Klee has a collection of i.i.d. samples, x1, . . . , xn, from a Poisson(θ) random variable, where θ is
unknown. Find the MLE of θ.

3. Independent Shreds, You Say?

Jean is given 100 independent samples x1, x2, . . . , x100 from Bernoulli(θ), where θ is unknown. (Each sample is
either a 0 or a 1). These 100 samples sum to 30. She would like to estimate the distribution’s parameter θ. Give all
answers to 3 significant digits.

(a) What is the maximum likelihood estimator θ̂ of θ?

(b) Is θ̂ an unbiased estimator of θ?

4. Y Me?

Let y1, y2, ...yn be i.i.d. samples of a random variable with density function

fY (y|θ) =
1

2θ
exp

(
−|y|

θ

)
.

Find the MLE for θ in terms of |yi| and n.

5. A biased estimator

In class, we showed that the maximum likelihood estimate of the variance θ2 of a normal distribution (when both
the true mean µ and true variance σ2 are unknown) is what’s called the population variance. That is

θ̂2 =

(
1

n

n∑
i=1

(xi − θ̂1)
2)

)

where θ̂1 = 1
n

∑n
i=1 xi is the MLE of the mean. Is θ̂2 unbiased?
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