
CSE 312: Foundations of Computing II Autumn 2022

Quiz Section 8.5 – Solutions

Review

1) Maximum Likelihood Estimator (MLE): We denote the MLE of θ as θ̂MLE or simply θ̂, the parameter (or
vector of parameters) that maximizes the likelihood function (probability of seeing the data).

θ̂MLE “ argmax
θ

L px1, . . . , xn | θq “ argmax
θ

lnL px1, . . . , xn | θq

2) An estimator θ̂ for a parameter θ of a probability distribution is unbiased iff Erθ̂pX1, . . . , Xnqs “ θ

Task 1 – Mystery Dish!

A fancy new restaurant has opened up that features only 4 dishes. The unique feature of dining here is that they
will serve you any of the four dishes randomly according to the following probability distribution: give dish A with
probability 0.5, dish B with probability θ, dish C with probability 2θ, and dish D with probability 0.5 ´ 3θ. Each
diner is served a dish independently. Let xA be the number of people who received dish A, xB the number of
people who received dish B, etc, where xA ` xB ` xC ` xD “ n. Find the MLE for θ, θ̂.

The data tells us, for each diner in the restaurant, what their dish was. We begin by computing
the likelihood of seeing the given data given our parameter θ. Because each diner is assigned a dish
independently, the likelihood is equal to the product over diners of the chance they got the particular
dish they got, which gives us:

Lpx | θq “ 0.5xAθxB p2θqxC p0.5 ´ 3θqxD

From there, we just use the MLE process to get the log-likelihood, take the first derivative, set it
equal to 0, and solve for θ̂.

lnLpx | θq “ xA lnp0.5q ` xB lnpθq ` xC lnp2θq ` xD lnp0.5 ´ 3θq

d

dθ
lnLpx | θq “

xB

θ
`

xC

θ
´

3xD

0.5 ´ 3θ

xB

θ̂
`

xC

θ̂
´

3xD

0.5 ´ 3θ̂
“ 0

Solving yields θ̂ “ xB`xC

6pxB`xC`xDq
.
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Task 2 – A Red Poisson

Suppose that x1, . . . , xn are i.i.d. samples from a Poisson(θ) random variable, where θ is unknown. In other
words, they follow the distributions Ppk; θq “ θke´θ{k!, where k P N and θ ą 0 is a positive real number.

Find the MLE of θ.

We follow the recipe given in class:

L px1, . . . , xn | θq “

n
ź

i“1

e´θ θ
xi

xi!

lnL px1, . . . , xn | θq “

n
ÿ

i“1

r´θ ´ lnpxi!q ` xi lnpθqs

d

dθ
lnL px1, . . . , xn | θq “

n
ÿ

i“1

”

´1 `
xi

θ

ı

´n `
Σn

i“1xi

θ̂
“ 0

θ̂ “
Σn

i“1xi

n

Task 3 – A biased estimator

In class, we showed that the maximum likelihood estimate of the variance θ2 of a normal distribution (when both
the true mean µ and true variance σ2 are unknown) is what’s called the population variance. That is

θ̂2 “

˜

1

n

n
ÿ

i“1

pxi ´ θ̂1q2q

¸

where θ̂1 “ 1
n

řn
i“1 xi is the MLE of the mean. Is θ̂2 unbiased?

Let X “ 1
n

řn
i“1 Xi. Then

E
”

θ̂2

ı

“ E

«

1

n

n
ÿ

i“1

pXi ´ Xq2

ff

“ E

«

1

n

n
ÿ

i“1

pX2
i ´ 2XiX ` X

2
q

ff

which by linearity of expectation (and distributing the sum) is

“
1

n

n
ÿ

i“1

E
“

X2
i

‰

´ E

«

2

n
X

n
ÿ

i“1

Xi

ff

` E
”

X
2
ı

“
1

n

n
ÿ

i“1

E
“

X2
i

‰

´ 2E
”

X
2
ı

` E
”

X
2
ı

“
1

n

n
ÿ

i“1

E
“

X2
i

‰

´ E
”

X
2
ı

. p˚˚q

We know that for any random variable Y , since Var pY q “ E
“

Y 2
‰

´ pE rY sq2 it holds that

E
“

Y 2
‰

“ Var pY q ` pE rY sq2.
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Also, we have E rXis “ µ, Var pXiq “ σ2 @i and E
“

X
‰

“ µ, Var
`

X
˘

“ σ2

n . Combining these facts,
we get

E
“

X2
i

‰

“ σ2 ` µ2 @i and E
”

X
2
ı

“
σ2

n
` µ2.

Substituting these equations into (**) we get

E

«

1

n

n
ÿ

i“1

pXi ´ Xq2q

ff

“
1

n

n
ÿ

i“1

E
“

X2
i

‰

´ E
”

X
2
ı

“ σ2 ` µ2 ´

ˆ

σ2

n
` µ2

˙

“

ˆ

1 ´
1

n

˙

σ2.

Thus θ̂2 is not unbiased.

Task 4 – Weather Forecast

A weather forecaster predicts sun with probability θ1, clouds with probability θ2 ´ θ1, rain with probability 1
2 and

snow with probability 1
2 ´ θ2. This year, there have been 55 sunny days, 100 cloudy days, 160 rainy days and 50

snowy days. What is the maximum likelihood estimator for θ1 and θ2?

We want to find the likelihood of the data samples given the parameter θ. To do this, we take the
following product over all the data points.

Lpx1, ..., x365 | θ1, θ2q “ θ551 pθ2 ´ θ1q100
ˆ

1

2

˙160 ˆ

1

2
´ θ2

˙50

Then, we use this to determine the log likelihood.

lnLpx1, ..., x365 | θ1, θ2q “ ln θ551 pθ2 ´ θ1q100
ˆ

1

2

˙160 ˆ

1

2
´ θ2

˙50

“ ln θ551 ` lnpθ2 ´ θ1q100 ` ln

ˆ

1

2

˙160

` ln

ˆ

1

2
´ θ2

˙50

“ 55 ln θ1 ` 100 lnpθ2 ´ θ1q ` 160 ln

ˆ

1

2

˙

` 50 ln

ˆ

1

2
´ θ2

˙

Then, we take the derivative of the log likelihood with respect to θ1.

B

Bθ1
lnLpx1, ..., x365 | θ1, θ2q “

55

θ1
´

100

θ2 ´ θ1

Setting this equal to 0, we solve for θ̂1:

55

θ̂1
´

100

θ̂2 ´ θ̂1
“ 0

55pθ̂2 ´ θ̂1q ´ 100 θ̂1 “ 0

55 θ̂2 “ 155 θ̂1

θ̂1 “
11

31
θ̂2
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Then, we take the derivative of the log likelihood with respect to θ2.

B

Bθ2
lnLpx1, ..., x365 | θ1, θ2q “

100

θ2 ´ θ1
´

50
1
2 ´ θ2

Setting this equal to 0, we solve for θ̂2:

100

θ̂2 ´ θ̂1
´

50
1
2 ´ θ̂2

“ 0

100

ˆ

1

2
´ θ̂2

˙

´ 50 pθ̂2 ´ θ̂1q “ 0

50 ´ 150 θ̂2 ` 50 θ̂1 “ 0

θ̂2 “
θ̂1 ` 1

3

We can now solve the simultaneous equations we have for θ1 and θ2 to obtain the maximum likelihood
estimators for each parameter.

θ̂2 “
θ̂1 ` 1

3

Plugging in the equation for θ1, we find

θ̂2 “

11
31 θ̂2 ` 1

3

3 θ̂2 “
11

31
θ̂2 ` 1

93 θ̂2 “ 11 θ̂2 ` 31

θ̂2 “
31

82

Plugging in the value for θ2 into the equation for θ1,

θ̂1 “
11

31
¨
31

82
“

11

82

To confirm that this is in fact a maximum, we could do a second derivative test. We won’t ask you
do this for this multivariate case, but it would still be good to check!
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