Quiz Section 8

Review

- 1) Markov's Inequality: Let X be a non-negative random variable, and $\alpha > 0$. Then, $\mathbb{P}(X \ge \alpha) \le \frac{\mathbb{E}[X]}{\alpha}$.
- 2) Chebyshev's Inequality: Suppose Y is a random variable with $\mathbb{E}[Y] = \mu$ and $Var(Y) = \sigma^2$. Then, for any $\alpha > 0$, $\mathbb{P}(|Y \mu| \ge \alpha) \le \frac{\sigma^2}{\alpha^2}$.
- 3) Chernoff Bound: Suppose $X = X_1 + \dots + X_n$ where the X_i are independent and in [0, 1]. Let $\mu = \mathbb{E}[X]$. Then, for any $0 < \delta \leq 1$, $\mathbb{P}(|X - \mu| \geq \delta \mu) \leq e^{-\delta^2 \mu/4}$ and for any $\delta > 0$, $\mathbb{P}(X - \mu \geq \delta \mu) \leq e^{-\delta^2 \mu/4}$.

	Discrete	Continuous
Joint PMF/PDF	$p_{X,Y}(x,y) = \mathbb{P}\left(X = x, Y = y\right)$	$f_{X,Y}(x,y) \neq \mathbb{P}\left(X = x, Y = y\right)$
Joint range/support		
$\Omega_{X,Y}$	$\{(x,y)\in\Omega_X\times\Omega_Y:p_{X,Y}(x,y)>0\}$	$\{(x,y)\in\Omega_X\times\Omega_Y:f_{X,Y}(x,y)>0\}$
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \leq x, s \leq y} p_{X,Y}(t,s)$	$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
Normalization	$\sum_{x,y} p_{X,Y}(x,y) = 1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$
Marginal PMF/PDF	$p_X(x) = \sum_y p_{X,Y}(x,y)$	$\int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
Expectation	$\mathbb{E}[g(X,Y)] = \sum_{x,y} g(x,y) p_{X,Y}(x,y)$	$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dxdy$
Independence	$\forall x, y, p_{X,Y}(x, y) = p_X(x)p_Y(y)$	$\forall x, y, f_{X,Y}(x, y) = f_X(x)f_Y(y)$
must have	$\Omega_{X,Y} = \Omega_X \times \Omega_Y$	$\Omega_{X,Y} = \Omega_X \times \Omega_Y$
Conditional PMF/PDF	$p_{X Y}(x y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$	$f_{X Y}(x y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$
Conditional Expectation	$\mathbb{E}[X Y=y] = \sum_{x} x \cdot p_{X Y}(x y)$	$\mathbb{E}[X Y=y] = \int_{-\infty}^{\infty} x f_{X Y}(x y) dx$

4) Multivariate: Discrete to Continuous:

Task 1 – A Dysfunctional Family

Rick and his grandson Morty are set to meet at a certain time. Since their relationship is a little strained, neither of them wants to be there on time. Let $X \sim Unif(0, 10)$ be the amount of minutes Morty is going to be late. Rick has cameras around the meeting spot and will observe Morty's arrival time X = x. Then, he will arrive at the meeting spot Unif(x, 5x) minutes late. Let Y be the random variable indicating how late Rick will be.

- a) Using the above definitions determine f_X , $f_{Y|X}$, and f_{XY} . (You will want to determine f_{YX} and use it to determine f_{XY} .).
- **b)** Compute $\mathbb{E}[Y]$.

Task 2 – Tail bounds

Suppose $X \sim \text{Binomial}(6, 0.4)$. We will bound $\mathbb{P}(X \ge 4)$ using the tail bounds we've learned, and compare this to the true result.

- a) Give an upper bound for this probability using Markov's inequality. Why can we use Markov's inequality?
- b) Give an upper bound for this probability using Chebyshev's inequality. You may have to rearrange algebraically and it may result in a weaker bound.
- c) Give an upper bound for this probability using the Chernoff bound.
- d) Give the exact probability.

Task 3 – Exponential Tail Bounds

Let $X \sim \text{Exp}(\lambda)$ and $k > 1/\lambda$. Recall that $\mathbb{E}[X] = \frac{1}{\lambda}$ and $\text{Var}(X) = \frac{1}{\lambda^2}$.

- a) Use Markov's inequality to bound $P(X \ge k)$.
- **b)** Use Chebyshev's inequality to bound $P(X \ge k)$.
- c) What is the exact formula for $P(X \ge k)$?
- d) For $\lambda k \ge 3$, how do the bounds given in parts (a), (b), and (c) compare?

Task 4 – How many samples?

Let $X = X_1 + \ldots X_n$ be the sum of n independent $Poisson(\lambda)$ random variables. Recall that the Poisson distribution has expectation and variance both equal to λ and has the summation property that X is a $Poisson(n\lambda)$ random variable.

- a) How large a value of n would Chebyshev's inequality need to guarantee that $\mathbb{P}(X \leq \mathbb{E}[X]/2) \leq 0.01$?
- b) How large a value of n would Markov's inequality need to guarantee that $\mathbb{P}(X \leq \mathbb{E}[X]/2) \leq 0.01$?