CSE 312 Foundations of Computing II

Lecture 3: Even more counting
Binomial Theorem, Inclusion-Exclusion, Pigeonhole Principle

Recap

Two core rules for counting a set S :

- Sum rule:
- Break up S into disjoint pieces/cases
$-|S|=$ the sum of the sizes of the pieces.
- Product rule:
- View the elements of S as being constructed by a series of choices, where the \# of possibilities for each choice doesn't depend on the previous choices
- $|S|=$ the product of the \# of choices in each step of the series.

Recap

- k-sequences: How many length k sequences over alphabet of size n ?
- Product rule $\rightarrow n^{k}$
- k-permutations: How many length k sequences over alphabet of size n, without repetition?
- Permutation $\rightarrow \frac{n!}{(n-k)!}$
- k-combinations: How many size k subsets of a set of size n (without repetition and without order)?
- Combination $\rightarrow\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Binomial Coefficients - Many interesting and useful properties

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \quad\binom{n}{n}=1 \quad\binom{n}{1}=n \quad\binom{n}{0}=1
$$

Fact. $\binom{n}{k}=\binom{n}{n-k}$
Symmetry in Binomial Coefficients

Fact. $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$
Follows from Binomial Theorem

Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$

Binomial Theorem: Idea

$$
\begin{aligned}
(x+y)^{2} & =(x+y)(x+y) \\
& =x x+x y+y x+y y \\
& =x^{2}+2 x y+y^{2} \\
(x+y)^{4} & =(\hat{x}+y)(x+y)(x+y)(x+y) \\
& =x x x x+y y y y+x y x y+y x y y+\ldots
\end{aligned}
$$

Binomial Theorem: Idea

$$
(x+y)^{n}=(x+y) \ldots(x+y)
$$

Each term is of the form $x^{k} y^{n-k}$, since each term is made by multiplying exactly n variables, either x or y, one from each copy of $(x+y)$

How many times do we get $x^{k} y^{n-k}$? exac l
The number of ways to choose x from exactly of the n copies of $(x+y)$ (the other $n-k$ choices will be y) which is:

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Binomial Theorem

Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

$$
\left.\underset{2}{(x+y)_{1}}\right)^{n}=\sum_{k=0}^{n} \underset{\underbrace{}_{1}}{\binom{n}{k}} x^{k} y_{1}^{n-k}
$$

Apply with $x=y=1$
Many properties of sums of binomial coefficients can be found by plugging in different values of x and y in the Binomial Theorem.

$$
\begin{aligned}
& \text { Corollary. } \\
& \qquad \sum_{k=0}^{n}\binom{n}{k}=2^{n}
\end{aligned}
$$

Agenda

- Binomial Theorem
- Combinatorial Proofs
- Inclusion-Exclusion
- Pigeonhole Principle
- Counting Practice

Recall: Symmetry in Binomial Coefficients

Fact. $\binom{n}{k}=\binom{n}{n-k}$
Two equivalent ways to choose k out of n objects (unordered)

1. Choose which k elements are included
2. Choose which $n-k$ elements are excluded

Format for a combinatorial argument/proof of $a=b$

- Let S be a set of objects
- \quad Show how to count $|S|$ one way $\Rightarrow|S|=a$
- \quad Show how to count $|S|$ another way $\Rightarrow|S|=b$

Combinatorial argument/proof

- Elegant
- Simple
- Intuitive

Algebraic argument

- Brute force
- Less Intuitive

This Photo by Unknown Author is licensed under CC BY-SA

This Photo by Unknown Author is licensed under CC BY-SA

Pascal's Identity

Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ How to prove Pascal's identity?

Algebraic argument:

$$
\begin{aligned}
\binom{n-1}{k-1}+\binom{n-1}{k} & =\frac{(n-1)!}{(k-1)!(n-k)!}+\frac{(n-1)!}{k!(n-1-k)!} \\
& =20 \text { years later ... } \\
& =\frac{n!}{k!(n-k)!} \quad \text { Hard work and not intuitive } \\
& =\binom{n}{k} \quad
\end{aligned}
$$

Let's see a combinatorial argument

Example - Pascal's Identity

Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$

$$
|S|=\underline{|A|}+|B|
$$

Combinatorial proof idea:

- Find disjoint sets A and B such that A, B, and $S=A \cup B$ have the sizes above.
- The equation then follows by the Sum Rule.

Example - Pascal's Identity

Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$
$|S|=|A|+|B|$
S : set of size k subsets of $[n]=\{1,2, \cdots, n\} . \quad|S|=\binom{n}{k}$ e.g. $n=4, k=2, S=\{\{1,2\},\{1,3\}, \underbrace{\{1,4\}},\{2,3\},\{2,4\},\{3,4\}\}$
A : set of size k subsets of $[n]$ that DO include n

$$
A=\{\{1,4\},\{2,4\},\{3,4\}\}
$$

B : set of size k subsets of $[n]$ that DON'T include n

$$
B=\{\{1,2\},\{1,3\},\{2,3\}\}
$$

Example - Pascal's Identity

S : set of size k subsets of $[n]=\{1,2, \cdots, n\}$
A : set of size k subsets of $[n]$ that DO include n
B : set of size k subsets of $[n]$ that DON'T include n

Combinatorial proof idea:

- Find disjoint sets A and B such that A, B, and $S=A \cup B$ have these sizes
n is in set, need to choose other $k-1$ elements from [$n-1$]

$$
|A|=\binom{n-1}{k-1}
$$

n not in set, need to choose k elements from $[n-1]$

$$
|B|=\binom{n-1}{k}
$$

Agenda

- Binomial Theorem
- Combinatorial Proofs
- Inclusion-Exclusion
- Pigeonhole Principle
- Counting Practice

Recap Disjoint Sets

Sets that do not contain common elements ($A \cap B=\varnothing$)

Sum Rule: $|A \cup B|=|A|+|B|$

Inclusion-Exclusion

But what if the sets are not disjoint?

Fact. $|A \cup B|=|A|+|B|-|A \cap B|$

Inclusion-Exclusion
What if there are three sets?

Fact.

$$
\begin{aligned}
|A \cup B \cup C| & =|A|+|B|+|C| \\
& -|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|
\end{aligned}
$$

Inclusion-Exclusion

Let A, B be sets. Then

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

In general, if $A_{1}, A_{2}, \ldots, A_{n}$ are sets, then

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right| & =\text { singles }- \text { doubles }+ \text { triples }- \text { quads }+\ldots \\
& =\left(\left|A_{1}\right|+\cdots+\left|A_{n}\right|\right)-\left(\left|A_{1} \cap A_{2}\right|+\ldots+\left|A_{n-1} \cap A_{n}\right|\right)+\ldots
\end{aligned}
$$

Brain Break

Agenda

- Binomial Theorem
- Combinatorial Proofs
- Inclusion-Exclusion
- Pigeonhole Principle
- Counting Practice

Pigeonhole Principle (PHP): Idea

10 pigeons, 9 pigeonholes

Pigeonhole Principle: Idea

If 11 children have to share 3 cakes, at least one cake must be shared by how many children?

Pigeonhole Principle - More generally

If there are n pigeons in $k<n$ holes, then one hole must contain at least $\frac{n}{k}$ pigeons!

Proof. Assume there are $<\frac{n}{k}$ pigeons per hole.
Then, there are $<k \cdot \frac{n}{k}=n$ pigeons overall.
Contradiction!

Pigeonhole Principle - Better version

If there are n pigeons in $k<n$ holes, then one hole must contain at least $\left\lceil\frac{n}{k}\right\rceil$ pigeons!
\lce, I Irciil

Reason. Can't have fractional number of pigeons

Syntax reminder:

- Ceiling: $\lceil x\rceil$ is x rounded up to the nearest integer (e.g., $\lceil 2.731\rceil=3$)
- Floor: $\lfloor x\rfloor$ is x rounded down to the nearest integer (e.g., $[2.731\rfloor=2$)

Pigeonhole Principle: Strategy

To use the PHP to solve a problem, there are generally 4 steps

1. Identify pigeons
2. Identify pigeonholes
3. Specify how pigeons are assigned to pigeonholes
4. Apply PHP

Pigeonhole Principle - Example
In a room with 367 people, there are at least two with the same birthday.

Solution:

1. 367 pigeons $=$ people
2. 366 holes (365 for a normal year + Feb 29) $=$ possible birthdays
3. Person goes into hole corresponding to own birthday
4. By PHP, there must be two people with the same birthday

Pigeonhole Principle - Example (Surprising?)

In every set S of 100 integers, there are at least two

 elements whose difference is a multiple of 37 .When solving a PHP problem:

1. Identify pigeons piyen
2. Identify pigeonholes
3. Specify how pigeons are assigned to pigeonholes
4. Apply PHP

Pigeonhole Principle - Example (Surprising?)

In every set S of 100 integers, there are at least two elements whose difference is a multiple of 37.

When solving a PHP problem:

1. Identify pigeons
2. Identify pigeonholes
3. Specify how pigeons are assigned to pigeonholes
4. Apply PHP

Pigeons: integers x in S
Pigeonholes: $\{0,1, \ldots, 36\}$
Assignment: x goes to $x \bmod 37$
Since $100>37$, by PHP, there are $x \neq y \in S$ s.t.
$\frac{x \bmod 37}{x-y=37}=\frac{y \bmod 37 \text { which implies }}{k \text { for some integer } k}$

Agenda

- Binomial Theorem
- Combinatorial Proofs
- Inclusion-Exclusion
- Pigeonhole Principle
- Counting Practice

Quick Review of Cards

How many possible 5 card hands?

$$
\left.\binom{5}{5}_{5}\right)^{t}
$$

- 52 total cards
- 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
- 4 different suits: Hearts, Diamonds, Clubs, Spades

Counting Cards I

- 52 total cards
- 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
- 4 different suits: Hearts, Diamonds, Clubs, Spades
- A "straight" is five consecutive rank cards of any suit (where A,2,3,4,5 also counts as consecutive). How many possible straights?

$$
\begin{aligned}
& \frac{A}{2}-5 \\
& \ddots \\
& 10 \text { J a KA } \\
& 10 \cdot 4^{5}=10,240
\end{aligned}
$$

Counting Cards II

- 52 total cards
- 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
- 4 different suits: Hearts, Diamonds, Clubs, Spades
- A flush is five card hand all of the same suit. How many possible flushes?

$$
4 \cdot\binom{13}{5}=5148
$$

Counting Cards III

- 52 total cards
- 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
- 4 different suits: Hearts, Diamonds, Clubs, Spades
- A flush is five card hand all of the same suit. How many possible flushes?

$$
4 \cdot\binom{13}{5}=5148
$$

- How many flushes are NOT straights?
= \#flush - \#flush and straight

$$
\left(4 \cdot\binom{13}{5}=5148\right)-10 \cdot 4
$$

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

No sequence \rightarrow under counting Many sequences \rightarrow over counting

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

First choose 3 Aces. Then choose remaining two cards.

$$
\left(\begin{array}{l}
\text { Poll: } \\
\left.\begin{array}{l}
4 \\
3
\end{array}\right) \cdot\binom{49}{2} \\
\begin{array}{l}
\text { A. Correct } \\
\text { B. Overcount } \\
\text { C. Undercount }
\end{array}
\end{array}\right.
$$

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

Many sequences \rightarrow over counting

EXAMPLE: How many ways are there to choos Problem: This counts a hand with contains at least 3 Aces?

First choose 3 Aces. Then choose remaining two cards.

$$
\binom{4}{3} \cdot\binom{49}{2}
$$

all 4 Aces in 4 different ways! e.g. it counts $A \&, A \vee, A \vee, A \uparrow, 2 \vee$ four times: $\{A *, A \diamond, A \bullet\}\{A \uparrow, 2 \vee\}$ $\{A \&, A \diamond, A \uparrow\}\{A \vee, 2 \vee\}$ $\{A *, A \vee, A \uparrow\}\{A \diamond, 2 \vee\}$ $\{A \bullet, A \vee, A \uparrow\}\{A *, 2 \vee\}$

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

No sequence \rightarrow under counting Many sequences \rightarrow over counting

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

Use the sum rule
= \# 5 card hand containing exactly 3 Aces

+ \# 5 card hand containing exactly 4 Aces ${ }^{-\cdots--(}\binom{48}{1}$

Counting when order only partly matters

We often want to count \# of partly ordered lists:
Let $M=\#$ of ways to produce fully ordered lists
P = \# of partly ordered lists
N = \# of ways to produce corresponding fully ordered list given a partly ordered list

Then $M=P \cdot N$ by the product rule. Often M and N are easy to compute:

$$
P=M / N
$$

Dividing by N "removes" part of the order.

Rooks on chessboard

How many ways to place two identical rooks on a chessboard so that they don't share a row or a column

Fully ordered: Pretend Rooks are different

1. Column for rook1

2. Row for rook1
3. Column for rook2
4. Row for rookz

$$
(8 \cdot 7)^{2}
$$

"Remove" the order of the two rooks:

Binomial Theorem: A less obvious consequence

Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}-\begin{aligned}
& =-1 \text { if } k \text { is odd } \\
& =+1 \text { if } k \text { is even }
\end{aligned}
$$

Corollary. For every n, if O and E are the sets of odd and even integers between 0 and n

$$
\sum_{k \in O}\binom{n}{k}=\sum_{k \in E}\binom{n}{k} \quad \text { e.g., } \mathrm{n}=4: 14641
$$

Proof: Set $x=-1, y=1$ in the binomial theorem

Tools and concepts

- Sum rule, Product rule
- Permutations, combinations
- Inclusion-exclusion
- Binomial Theorem
- Combinatorial proofs
- Pigeonhole principle
- Binary encoding/stars and bars

