CSE 312 Foundations of Computing II

1

1

Lecture 7: Random Variables

Announcements

- PSet 1 graded + solutions on canvas
- PSet 2 due tonight
- Pset 3 posted this evening
 - First programming assignment (naïve Bayes)
 - Extensive intro in the sections tomorrow
 - Python tutorial lesson on edstem

Review Chain rule & independence

Theorem. (Chain Rule) For events $A_1, A_2, ..., A_n$, $P(\underline{A_1 \cap \cdots \cap A_n}) = P(\underline{A_1}) \cdot P(\underline{A_2}|\underline{A_1}) \cdot P(\underline{A_3}|\underline{A_1 \cap A_2})$ $\cdots P(\overline{A_n}|\underline{A_1 \cap A_2} \cap \cdots \cap A_{n-1})$ Definition. Two events A and A are (statistically) independent if $P(\underline{A \cap B}) = P(\underline{A}) \cdot P(\underline{B}).$

"Equivalently." P(A|B) = P(A).

One more related item: Conditional Independence ' P(· | e)

Definition. Two events *A* and *B* are **independent** conditioned on *C* if $P(C) \neq 0$ and $P(A \cap B \mid C) = P(A \mid C) \cdot P(B \mid C)$.

- If $P(A \cap C) \neq 0$, equivalent to $P(B|A \cap C) = P(B | C)$
- If $P(B \cap C) \neq 0$, equivalent to $P(A | B \cap C) \triangleq P(A | C)$

Plain Independence. Two events *A* and *B* are independent if

 $P(A \cap B) = P(A) \cdot P(B).$

- If $P(A) \neq 0$, equivalent to P(B|A) = P(B)
- If $P(B) \neq 0$, equivalent to P(A|B) = P(A)

Example - Throwing Dice

Suppose that Coin 1 has probability of heads 0.3 and Coin 2 has probability of head 0.9. We choose one coin randomly with equal probability and flip that coin 3 times independently. What is the probability we get all heads? $P(HHH) = P(HHH | C_1) \cdot P(C_1) + P(HHH | C_2) \cdot P(C_2)$ Law of Total Probability (LTP) $= P(H|C_1)^3 P(C_1) + P(H | C_2)^3 P(C_2)$ Conditional Independence $= 0.3^3 \cdot 0.5 + 0.9^3 \cdot 0.5 = 0.378$

Conditional independence and Bayesian inference in practice: Graphical models

- The sample space Ω is often the Cartesian product of possibilities of many different variables
- We often can understand the probability distribution *P* on Ω based on local properties that involve a few of these variables at a time
- We can represent this via a directed acyclic graph augmented with probability tables (called a Bayes net) in which each node represents one or more variables...

Graphical Models/Bayes Nets

• Bayes net for the Zika testing probability space (Ω, P)

Graphical Models/Bayes Nets

"A Bayesian Network Model for Diagnosis of Liver Disorders" – Agnieszka Onisko, M.S., Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D., Ph.D.- September 1999.

Graphical Models/Bayes Nets

Bayes Net assumption/requirement

- The only dependence between variables is given by paths in the Bayes Net graph:
 - if only edges are $(A \rightarrow B \rightarrow C)$

then **A** and **C** are conditionally independent given the value of **B**

Inference in Bayes Nets

Given

- Bayes Net
 - graph
 - conditional probability tables for all nodes
- Observed values of variables at some nodes
 - e.g., clinical test results

Compute

- Probabilities of variables at other nodes
 - e.g., diagnoses

For much more see CSE 473

"A Bayesian Network Model for Diagnosis of Liver Disorders" – Agnieszka Onisko, M.S., Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D.,Ph.D.-September 1999.

Summary Chain rule & independence

Theorem. (Chain Rule) For events $A_1, A_2, ..., A_n$, $P(A_1 \cap \cdots \cap A_n) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_1 \cap A_2)$ $\cdots P(A_n | A_1 \cap A_2 \cap \cdots \cap A_{n-1})$

Definition. Two events *A* and *A* are (statistically) **independent** if $P(A \cap B) = P(A) \cdot P(B)$.

"Equivalently." P(A|B) = P(A).

Definition. Two events A and B are **independent conditioned on** C if $P(C) \neq 0$ and $P(A \cap B \mid C) = P(A \mid C) \cdot P(B \mid C)$.

11

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Random Variables (Idea)

Often: We want to **capture quantitative properties** of the outcome of a random experiment, e.g.:

- What is the total of two dice rolls?
- What is the number of coin tosses needed to see the first head?
- What is the number of heads among 2 coin tosses?

Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \to \mathbb{R}$.

The set of values that X can take on is called its range/support Two common notations: $X(\Omega)$ or Ω_X

Example. Two coin flips: $\Omega = \{HH, HT, TH, TT\}$ X = number of heads in two coin flips X(HH) = 2 X(HT) = 1 X(TH) = 1 X(TT) = 0range (or support) of X is $X(\Omega) = \{0,1,2\}$

Another RV Example

20 different balls labeled 1, 2, ..., 20 in a jar

- Draw a subset of 3 from the jar uniformly at random
- Let X = maximum of the 3 numbers on the balls
 - Example: X({2, 7, 5}) = 7
 Example: X({15, 3, 8}) = 15

pollev.com/paulbeameo28

How large is $|X(\Omega)|$?

A.
$$20^{3}$$

B. 20
C. 18
D. $\binom{20}{3}$

15

Random Variables

Random Variables

Definition. For a RV $X: \Omega \to \mathbb{R}$, we define the event $\{X = x\} = \{\omega \in \Omega \mid X(\omega) = x\}$ We write $P(X = x) = P(\{X = x\})$

Example. Two coin flips: $\Omega = \{\text{TT}, \text{HT}, \text{TH}, \text{HH}\}$ X = number of heads in two coin flips $\Omega_X = X(\Omega) = \{0, 1, 2\}$ $P(X = 0) = \frac{1}{4}$ $P(X = 1) = \frac{1}{2}$ $P(X = 2) = \frac{1}{4}$ The RV X yields a new probability distribution with sample space $\Omega_X \subset \mathbb{R}!$

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the function $p_X: \Omega_X \to \mathbb{R}$ defined by $p_X(x) = P(X = x)$ is called the **probability mass function (PMF)** of X

Random variables **partition** the sample space. $\sum P(X = x) = 1$

 $x \in \overline{X(\Omega)}$

$$X(\omega) = x_1$$

$$X(\omega) = x_3$$

$$X(\omega) = x_2$$

$$X(\omega) = x_3$$

$$X(\omega) = x_1$$

$$X(\omega) = x_1$$

p.s.

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the function $p_X: \Omega_X \to \mathbb{R}$ defined by $p_X(x) = P(X = x)$ is called the **probability mass function (PMF)** of X

Random variables **partition** the sample space. $\sum_{x \in \Omega_X} P(X = x) = 1$

$$X(\omega) = x_1$$

$$X(\omega) = x_3$$

$$X(\omega) = x_2$$

$$X(\omega) = x_3$$

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the function $p_X: \Omega_X \to \mathbb{R}$ defined by $p_X(x) = P(X = x)$ is called the **probability mass function (PMF)** of X

Random variables **partition** the sample space. $\sum_{x \in \Omega_X} p_X(x) = 1$

$$X(\omega) = x_1$$

$$X(\omega) = x_3$$

$$X(\omega) = x_2$$

$$X(\omega) = x_3$$

$$X(\omega) = x_2$$

Example – Two Fair Dice

22

Example – Number of Heads

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Events concerning RVs

We already defined $P(X = x) = P({X = x})$ where ${X = x} = {\omega \in \Omega | X(\omega) = x}$

 $X \in \mathcal{I} \cdot \mathcal{I}$

Sometimes we want to understand other events involving RV X

-e.g. $\{X \le x\} = \{\omega \in \Omega \mid X(\omega) \le x\}$ which makes sense for any $x \in \mathbb{R}$

More generally...

- We could take any predicate $Q(\cdot)$ defined on the real numbers, and consider an event $\{Q(X)\} = \{\omega \in \Omega \mid Q(X(\omega)) \text{ is true}\}$
- If $Q(\cdot, \cdot)$ is a predicate of two real numbers and X and Y are RVs both defined on Ω then $\{Q(X, Y)\} = \{\omega \in \Omega \mid Q(X(\omega), Y(\omega)) \text{ is true}\}$
- The same thing works for properties of even more RVs

Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the cumulative distribution function of *X* is the function $F_X: \mathbb{R} \to [0,1]$ that specifies for any real number *x*, the probability that $X \leq \overline{x}$.

That is, F_X is defined by $F_X(x) = P(X \le x)$

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation <

Expectation (Idea)

Example. Two fair coin flips $\Omega = \{TT, HT, TH, HH\}$ X = number of heads

- If we chose samples from Ω over and over repeatedly, how many heads would we expect to see per sample from Ω?
 - The idealized number, not the average of actual numbers seen (which will vary from the ideal)

Expected Value of a Random Variable

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value or mean of X is $\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$ or equivalently $\mathbb{E}[X] = \sum_{x \in X(\Omega)} x \cdot P(X = x) = \sum_{x \in \Omega_X} x \cdot p_X(x)$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Expected Value

Definition. The expected value of a (discrete) RV X is $\mathbb{E}[X] = \sum_{x} x \cdot p_{X}(x) = \sum_{x} x \cdot P(X = x)$

Example. Value X of rolling one fair die $p_X(1) = p_X(2) = \dots = p_X(6) = \frac{1}{6}$ $\mathbb{E}[X] = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = \frac{21}{6} = 3.5$

For the equally-likely outcomes case, this is just the average of the possible outcomes!