
CSE 312

Foundations of Computing II

Lecture 7: Random Variables
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Announcements

• PSet 1 graded + solutions on canvas

• PSet 2 due tonight

• Pset 3 posted this evening

– First programming assignment (naïve Bayes)

– Extensive intro in the sections tomorrow

– Python tutorial lesson on edstem
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Review Chain rule & independence

3

Definition. Two events � and � are (statistically) independent if

� � ∩ � = � � ⋅ �(�).

“Equivalently.” � �|� = � � .

Theorem. (Chain Rule) For events ��, ��, … , �� , 

� �� ∩ ⋯ ∩ �� = � �� ⋅ � �� �� ⋅ �(��|�� ∩ ��)
⋯ �(��|�� ∩ �� ∩ ⋯ ∩ ����)



Plain Independence. Two events � and � are independent if

� � ∩ � = � � ⋅ �(�).

One more related item:  Conditional Independence
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• If � � ≠ 0, equivalent to � � � = � �
• If � � ≠ 0, equivalent to � � � = � �

• If � � ∩ � ≠ 0, equivalent to � � � ∩ � = � � | �
• If � � ∩ � ≠ 0, equivalent to � � � ∩ � = � � | �

Definition. Two events � and � are independent conditioned on � if
� � ≠ 0 and � � ∩ � | � = � � | � ⋅ � �  �).



Example – Throwing Dice 

Suppose that Coin 1 has probability of heads 0.3
and Coin 2 has probability of head 0.9. 

We choose one coin randomly with equal probability and flip that coin 3 
times independently.   What is the probability we get all heads?

� (���)  = � ��� ��) ⋅ � (��)  + �(���  �� ⋅ � (��)
     = � � �� � � (��)  + � (�  �� � �(��)
     = 0.3� ⋅ 0.5 + 0.9� ⋅ 0.5 = 0.378

Law of Total Probability
(LTP)

Conditional Independence

�� = coin � was selected



Conditional independence and Bayesian inference in practice:              
Graphical models 

● The sample space Ω is often the Cartesian product of possibilities of 
many different variables

● We often can understand the probability distribution � on Ω based on 
local properties that involve a few of these variables at a time

● We can represent this via a directed acyclic graph augmented with 
probability tables (called a Bayes net) in which each node represents 
one or more variables…
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Graphical Models/Bayes Nets

• Bayes net for the Zika testing probability space Ω, �
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Has ZikaHas Zika

Tests 

Positive

Tests 

Positive

! ¬!
0.005 0.995

# ¬#
$ 0.98 0.02

¬$ 0.01 0.99

Conditional Probability Table:
• One column for each value of 

the variables at the node
• One row for each combination 

of values of immediate 
predecessors

�(%|¬$)
Ω = Cartesian product of possible 
value assignments at all nodes.  



Graphical Models/Bayes Nets

“A Bayesian Network Model for Diagnosis of Liver Disorders” – Agnieszka Onisko, M.S., 
Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D.,Ph.D.- September 1999.

8



Graphical Models/Bayes Nets

Bayes Net assumption/requirement

• The only dependence between variables is given by paths in 
the Bayes Net graph:

• if only edges are 

then A and C are conditionally independent given the value of B
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AA BB CC

BBAA CC

DDBBAA CC

DD A, B, C conditionally 
independent given D

A, B, and C are
independent

Defines a unique global probability space (Ω, �)



Inference in Bayes Nets

“A Bayesian Network Model for Diagnosis of Liver Disorders” – Agnieszka
Onisko, M.S., Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D.,Ph.D.-
September 1999.
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Given
• Bayes Net

• graph
• conditional probability tables 

for all nodes
• Observed values of variables at 

some nodes
• e.g., clinical test results

Compute
• Probabilities of variables at 

other nodes
• e.g., diagnoses

For much more see CSE 473



Summary Chain rule & independence
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Definition. Two events � and � are (statistically) independent if

� � ∩ � = � � ⋅ �(�).

“Equivalently.” � �|� = � � .

Definition. Two events � and � are independent conditioned on � if
� � ≠ 0 and � � ∩ � | � = � � | � ⋅ � �  �).

Theorem. (Chain Rule) For events ��, ��, … , �� , 

� �� ∩ ⋯ ∩ �� = � �� ⋅ � �� �� ⋅ �(��|�� ∩ ��)
⋯ �(��|�� ∩ �� ∩ ⋯ ∩ ����)



Agenda

• Random Variables

• Probability Mass Function (PMF)

• Cumulative Distribution Function (CDF)

• Expectation
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Random Variables (Idea)

Often: We want to capture quantitative properties of the 
outcome of a random experiment, e.g.:

– What is the total of two dice rolls?

– What is the number of coin tosses needed to see the first head?

– What is the number of heads among 2 coin tosses?
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Random Variables

Definition. A random variable (RV) for a probability space 
(Ω, �) is a function &: Ω → ℝ.

The set of values that & can take on is called its range/support

Two common notations: &(Ω) or Ω*
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Example. Two coin flips: Ω = HH, HT, TH, TT
& = number of heads in two coin flips

& HH = 2 & HT = 1 & TH = 1 & TT = 0
range (or support) of & is & Ω = {0,1,2}



Another RV Example

20 different balls labeled 1, 2, …, 20 in a jar

– Draw a subset of 3 from the jar uniformly at random

– Let & = maximum of the 3 numbers on the balls
• Example: & {2, 7, 5} = 7
• Example: & {15, 3, 8} = 15
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pollev.com/paulbeame028

A. 20� 
B. 20
C. 18
D. �@

�

How large is & Ω ?



Random Variables

Definition. For a RV &: Ω → ℝ, we define the event 

& = B = C ∈ Ω  & C = B}
We write � & = B = � & = B
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& C = B�

& C = B�

& C = B�

& C = BERandom variables 
partition the 
sample space.

ΣG∈*(H)� & = B = 1



Random Variables

Definition. For a RV &: Ω → ℝ, we define the event 

& = B = C ∈ Ω  & C = B}
We write � & = B = � & = B
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Example. Two coin flips: Ω = TT, HT, TH, HH
& = number of heads in two coin flips

� & = 0 = 1
4        � & = 1 = 1

2        � & = 2 = 1
4

Ω* = & Ω = {0,1,2}

The RV & yields a new probability distribution with sample space Ω* ⊂ ℝ! 



Agenda

• Random Variables

• Probability Mass Function (PMF)

• Cumulative Distribution Function (CDF)

• Expectation
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Probability Mass Function (PMF)
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& C = B�

& C = B�

& C = B�

& C = BERandom variables 
partition the 
sample space.

K � & = B = 1
G∈* H

Definition. For a RV &: Ω → ℝ, the function L*: Ω* → ℝ
defined by  L*(B) = � & = B is called the probability mass 
function (PMF) of &



Probability Mass Function (PMF)
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& C = B�

& C = B�

& C = B�

& C = BERandom variables 
partition the 
sample space.

K � & = B = 1
G∈HM

Definition. For a RV &: Ω → ℝ, the function L*: Ω* → ℝ
defined by  L*(B) = � & = B is called the probability mass 
function (PMF) of &



Probability Mass Function (PMF)
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& C = B�

& C = B�

& C = B�

& C = BERandom variables 
partition the 
sample space.

K L*(B) = 1
G∈HM

Definition. For a RV &: Ω → ℝ, the function L*: Ω* → ℝ
defined by  L*(B) = � & = B is called the probability mass 
function (PMF) of &



Example – Two Fair Dice

22
2 3 4 5 6 7 8 9 10 11 12

1/36

2/36

3/36

4/36

5/36

6/36

& = sum of two dice throws

L*



Example – Number of Heads
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We flip N coins, independently, each heads with probability L

& = # of heads

L* O = � & = O = N
O ⋅ LP ⋅ 1 Q L ��P

Ω = {HH ⋯ HH, HH ⋯ HT, HH ⋯ TH, … , TT ⋯ TT}

# of sequences with O heads Prob of sequence w/ O heads 



24



Agenda

• Random Variables

• Probability Mass Function (PMF)

• Cumulative Distribution Function (CDF)

• Expectation
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Events concerning RVs

We already defined � & = B = � & = B where 
& = B = C ∈ Ω  & C = B}

Sometimes we want to understand other events involving RV &
– e.g. & ≤ B = C ∈ Ω  & C ≤ B} which makes sense for any B ∈ ℝ

More generally…

– We could take any predicate S(⋅) defined on the real numbers, and consider an 

event S & = C ∈ Ω  S & C  is true}
– If S(⋅,⋅) is a predicate of two real numbers and & and T are RVs both defined on 

Ω then S &, T = C ∈ Ω  S & C , T C  is true}
– The same thing works for properties of even more RVs
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Cumulative Distribution Function (CDF)

Definition. For a RV &: Ω → ℝ, the cumulative distribution function of 
& is the function U*: ℝ → 0,1 that specifies for any real number B, the 
probability that & ≤ B.   

That is, U* is defined by   U* B = � (& ≤ B)
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Example – Two fair coin flips
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-1 0 1 2 3 -1 0 1 2 3

1/4

1/2

3/4

1

& = number of heads

L* U*

Probability Mass Function
PMF

Cumulative Distribution Function
CDF



Agenda

• Random Variables

• Probability Mass Function (PMF)

• Cumulative Distribution Function (CDF)

• Expectation
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Expectation (Idea)

• If we chose samples from Ω
over and over repeatedly, how 
many heads would we expect to 
see per sample from Ω?

– The idealized number, not the 
average of actual numbers seen 
(which will vary from the ideal)
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-1 0 1 2 3

1/4

1/2

3/4

1

L*

Example. Two fair coin flips
Ω = TT, HT, TH, HH
& = number of heads



Expected Value of a Random Variable

Definition. Given a discrete RV &: Ω → ℝ, the expectation or expected 
value or mean of & is   

V & = K & C ⋅ � (C)
W∈H

or equivalently
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Intuition: “Weighted average” of the possible outcomes (weighted by probability)

= K B ⋅ L*(B)
G∈HM

V & = K B ⋅ � (& = B)
G∈X(H)



Expected Value
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Definition. The expected value of a (discrete) RV & is
V & = ∑ B ⋅ L*(B)G = ∑ B ⋅ �(& = B)G  

Example. Value & of rolling one fair die

L* 1 = L* 2 = ⋯ = L* 6 = 1
6

V & = 1 ⋅ 1
6 + 2 ⋅ 1

6 + 3 ⋅ 1
6 + 4 ⋅ 1

6 + 5 ⋅ 1
6 + 6 ⋅ 1

6 = 21
6 = 3.5

For the equally-likely outcomes case, this is just the average of the possible outcomes!


