CSE 312
 Foundations of Computing II

Lecture 7: Random Variables

Announcements

- PSet 1 graded + solutions on canvas
- PSet 2 due tonight
- Pset 3 posted this evening
- First programming assignment (naïve Bayes)
- Extensive intro in the sections tomorrow
- Python tutorial lesson on edstem

Review Chain rule \& independence

Theorem. (Chain Rule) For events $A_{1}, A_{2}, \ldots, A_{n}$,

$$
P\left(\underline{A_{1} \cap \cdots \cap A_{n}}\right)=P\left(A_{1}\right) \cdot P\left(A_{2} \mid A_{1}\right) \cdot P\left(A_{3} \mid A_{1} \cap A_{2}\right)
$$

Definition. Two events A and A are (statistically) independent if

$$
P(A \cap B)=P(A) \cdot P(B)
$$

"Equivalently." $P(A \mid B)=P(A)$.

One more related item: Conditional Independence $\mathcal{C} P(\cdot|C|)$

Definition. Two events A and B are independent conditioned on C if

$$
P(C) \neq 0 \text { and } P(A \cap B \mid C)=P(\underbrace{A} \mid C) \cdot P(B \mid C) .
$$

- If $P(A \cap C) \neq 0$, equivalent to $P(B \mid A \cap C)=P(B \mid C)$
- If $P(B \cap C) \neq 0$, equivalent to $P(A \mid \overline{B \cap C})=P(A \mid C)$

Plain Independence. Two events A and B are independent if

$$
P(A \cap B)=P(A) \cdot P(B)
$$

- If $P(A) \neq 0$, equivalent to $P(B \mid A)=P(B)$
- If $P(B) \neq 0$, equivalent to $P(A \mid B)=P(A)$

Flipglay loint
 Example - Throwing Dice

Suppose that Coin 1 has probability of heads 0.3
and Coin 2 has probability of head 0.9.
We choose one coin randomly with equal probability and flip that coin 3 times independently. What is the probability we get all heads?

$$
\begin{aligned}
& \underline{P(H H H)}=P\left(H H H \mid C_{1}\right) \cdot \underbrace{\underline{1 / 2}\left(C_{1}\right)}+P\left(\underline{H H H \mid} \mid C_{2}\right) \cdot \underbrace{P_{(1)}^{\left(C_{2}\right)}}{ }_{(\text {LIP })}^{\text {Law of Total Probability }} \\
& =\underbrace{P\left(H \mid C_{1}\right)^{3}} P\left(C_{1}\right)+\underline{P\left(H \mid C_{2}\right.})^{3} P\left(C_{2}\right) \quad \text { Conditional Independence } \\
& =\underline{0.3^{3}} \cdot 0.5+\underline{0.9^{3}} \cdot 0.5 \doteq 0.378 \\
& C_{i}=\operatorname{coin} i \text { was selected }
\end{aligned}
$$

Conditional independence and Bayesian inference in practice: Graphical models

- The sample space Ω is often the Cartesian product of possibilities of many different variables
- We often can understand the probability distribution P on Ω based on local properties that involve a few of these variables at a time
- We can represent this via a directed acyclic graph augmented with probability tables (called a Bayes net) in which each node represents one or more variables...

Graphical Models/Bayes Nets

- Bayes net for the Zika testing probability space (Ω, P)

Conditional Probability Table:

- One column for each value of the variables at the node
- One row for each combination of values of immediate predecessors
$\Omega=$ Cartesian product of possible value assignments at all nodes.

Graphical Models/Bayes Nets

"A Bayesian Network Model for Diagnosis of Liver Disorders" - Agnieszka Onisko, M.S., Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D.,Ph.D.- September 1999.

Graphical Models/Bayes Nets

Bayes Net assumption/requirement

- The only dependence between variables is given by paths in the Bayes Net graph:
- if only edges are

A then A and C are conditionally independent given the value of B

Defines a unique global probability space (Ω, P)

Inference in Bayes Nets

Given

- Bayes Net
- graph
- conditional probability tables for all nodes
- Observed values of variables at some nodes
- e.g., clinical test results

Compute

- Probabilities of variables at other nodes
- e.g., diagnoses

For much more see CSE 473

"A Bayesian Network Model for Diagnosis of Liver Disorders" - Agnieszka Onisko, M.S., Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D.,Ph.D.September 1999.

Summary Chain rule \& independence

Theorem. (Chain Rule) For events $A_{1}, A_{2}, \ldots, A_{n}$,

$$
\begin{aligned}
P\left(A_{1} \cap \cdots \cap A_{n}\right)=P\left(A_{1}\right) \cdot P\left(A_{2} \mid A_{1}\right) \cdot & P\left(A_{3} \mid A_{1} \cap A_{2}\right) \\
& \cdots P\left(A_{n} \mid A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right)
\end{aligned}
$$

Definition. Two events A and A are (statistically) independent if

$$
P(A \cap B)=P(A) \cdot P(B)
$$

"Equivalently." $P(A \mid B)=P(A)$.

Definition. Two events A and B are independent conditioned on C if

$$
P(C) \neq 0 \text { and } P(A \cap B \mid C)=P(A \mid C) \cdot P(B \mid C) .
$$

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Random Variables (Idea)

Often: We want to capture quantitative properties of the outcome of a random experiment, e.g.:

- What is the total of two dice rolls?
- What is the number of coin tosses needed to see the first head?
- What is the number of heads among 2 coin tosses?

Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $\underline{X: \Omega} \rightarrow \mathbb{R}$.

The set of values that X can take on is called its range/support
Two common notations: $X(\Omega)$ or Ω_{X}
Example. Two coin flips: $\Omega=\{$ HH, HT, TH, WT $\}$

$$
x(\Omega)=\{0,1,2\}
$$

$X=$ number of heads in two coin flips

$$
\begin{aligned}
& X(\underline{\mathrm{HH}})=\underline{2} \quad X(\mathrm{HT})=\underline{1} \quad X(\mathrm{TH})=1 \quad X(\mathrm{TT})=0 \\
& \text { range (or support) of } X \text { is } X(\Omega)=\{0,1,2\}
\end{aligned}
$$

Another RV Example

20 different balls labeled 1, 2, ..., 20 in a jar

- Draw a subset of 3 from the jar uniformly at random
- Let $X=$ maximum of the 3 numbers on the balls
- Example: $X(\{2,7,5\})=7$
- Example: $X(\{15,3,8\})=15$
pollev.com/paulbeame028

$$
\begin{array}{ll}
\text { How large is }|X(\Omega)| ? & \text { A. } 20^{3} \\
x(\Omega)=\left\{\begin{array}{l}
\text { ? } \\
\sum_{n, n}, 4, \\
x(\Omega)
\end{array}|x(\Omega)|=18\right. & \text { B. } 20 \\
\text { C. } 18
\end{array} \leftarrow
$$

Random Variables

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, we define the event

$$
\{X=x\}=\{\omega \in \Omega \mid X(\omega)=x\}
$$

We write $P(X=x)=P(\{X=x\})$

Random variables partition the sample space.
$\Sigma_{x \in X(\Omega)} P(X=x)=1$

Random Variables

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, we define the event

$$
\{X=x\}=\{\omega \in \Omega \mid X(\omega)=x\}
$$

We write $P(X=x)=P(\{X=x\})$

Example. Two coin flips: $\Omega=\{$ TT, HT, TH, HH $\}$

$$
P(X=0)=\frac{1}{4} \quad P(X=1)=\frac{1}{2} \quad P(X=2)=\frac{1}{4}
$$

$$
\Omega_{X}=X(\Omega)=\frac{\begin{array}{c}
\frac{1}{4} \frac{1}{2} \frac{1}{4} \\
\frac{1}{4}
\end{array}, \frac{0,1,2\}}{1}}{}
$$

The RV X yields a new probability distribution with sample space $\left(\Omega_{X}\right) \subset \mathbb{R}$!

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Probability Mass Function (PMF)

$$
\text { I. } \Omega \underset{\geqslant 0}{\rightarrow} \mathbb{R}
$$

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, the function $p_{X}: \Omega_{X} \rightarrow \mathbb{R}$ defined by $p_{X}(x)=P(X=x)$ is called the probability mass function (PMF) of X

$$
\left(\Omega_{x}, p_{x}\right) \text { Pubahility space }
$$

Random variables partition the sample space.
$\sum_{x \in X(\Omega)} P(X=x)=1$

Ω

Probability Mass Function (PMF)

Definition. For a $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the function $p_{X}: \Omega_{X} \rightarrow \mathbb{R}$ defined by $p_{X}(x)=P(X=x)$ is called the probability mass function (PMF) of X

Random variables partition the sample space.
$\sum_{x \in \Omega_{X}} P(X=x)=1$

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, the function $p_{X}: \Omega_{X} \rightarrow \mathbb{R}$ defined by $p_{X}(x)=P(X=x)$ is called the probability mass function (PMF) of X

Random variables partition the sample space.
$\sum_{x \in \Omega_{X}} p_{X}(x)=1$

Example - Two Fair Dice

Example - Number of Heads
We flip n coins, independently, each heads with probability p

$$
\begin{aligned}
& \Omega=\{\underbrace{H=\# \text { of heads }}_{P_{x}(n)=p^{n}}, \frac{\text { HB } \cdots \text { HT, HM } \cdots \mathrm{TH}, \ldots, \text { TT } \cdots \mathrm{TT}\}}{(1-p)^{n}} \quad 2^{n}{ }_{k}^{n} \\
& \text { head } 1
\end{aligned}
$$

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF) -
- Expectation

Events concerning RVs

We already defined $P(X=x)=P(\{X=x\})$ where

$$
\{X=x\}=\{\omega \in \Omega \mid X(\omega)=x\} \quad X \leq 2.5
$$

Sometimes we want to understand other events involving RV X

- e.g. $\{X \leq x\}=\{\omega \in \Omega \mid X(\omega) \leq x\}$ which makes sense for any $x \in \mathbb{R}$

More generally...

- We could take any predicate $\mathcal{Q}(\cdot)$ defined on the real numbers, and consider an event $\{Q(X)\}=\{\omega \in \Omega \mid \mathcal{Q}(X(\omega))$ is true $\}$
- If $Q(\cdot, \cdot)$ is a predicate of two real numbers and X and Y are RVs both defined on Ω then $\{Q(X, Y)\}=\{\omega \in \Omega \mid Q(X(\omega), Y(\omega))$ is true $\}$
- The same thing works for properties of even more RVs

Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function of X is the function $F_{X}: \mathbb{R} \rightarrow[0,1]$ that specifies for any real number x, the probability that $X \leq \bar{x}$.

That is, F_{X} is defined by $F_{X}(x)=P(X \leq x)$

Example - Two fair coin flips

$X=$ number of heads

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Expectation (Idea)

Example. Two fair coin flips
$\Omega=\{\mathrm{TT}, \mathrm{HT}, \mathrm{TH}, \mathrm{HH}\}$
$X=$ number of heads

- If we chose samples from Ω over and over repeatedly, how many heads would we expect to see per sample from Ω ?
- The idealized number, not the average of actual numbers seen (which will vary from the ideal)

Expected Value of a Random Variable

Definition. Given a discrete $\operatorname{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of X is
or equivalently

$$
\begin{gathered}
\mathbb{E}[X]=\sum_{\omega \in \Omega} \frac{X(\omega)}{\pi} \cdot \underbrace{P(\omega)} \\
\left.\mathbb{E}[X]=\sum_{x \in X(\Omega)} x\right) \cdot \underline{P(X=x)}=\sum_{x \in \Omega_{X}} x \cdot \underline{p_{X}(x)}
\end{gathered}
$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Expected Value

Definition. The expected value of a (discrete) RV X is

$$
\mathbb{E}[X]=\sum_{x} x \cdot p_{X}(x)=\sum_{x} x \cdot P(X=x)
$$

Example. Value X of rolling one fair die
$\begin{aligned} p_{X}(1)=p_{X}(2)=\cdots=p_{X}(6) & =\frac{1}{6} \\ \mathbb{E}[X]=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6} & =\frac{21}{6}=\overline{3.5}\end{aligned}$
For the equally-likely outcomes case, this is just the average of the possible outcomes!

