
CSE 312

Foundations of Computing II

Lecture 8: Linearity of Expectation
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Last Class:

• Random Variables

• Probability Mass Function (PMF)

• Cumulative Distribution Function (CDF)

• Expectation
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Today:

• More Expectation Examples

• Linearity of Expectation

• Indicator Random Variables

This Photo by Unknown Author is licensed under CC BY-SA

Kandinsky



Review Random Variables

Definition. A random variable (RV) for a probability space (Ω, �) is a function �: Ω → ℝ.

The set of values that � can take on is its range/support:  �(Ω) or Ω�
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� � = ��

� � = ��

� � = ��

� � = ��� = �� = � ∈ Ω  � � = ��}
Random variables partition
the sample space.

Σ�∈�(�)� � = � = 1



Review PMF and CDF
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For a RV �: Ω → ℝ, the probability mass function (pmf) of �
specifies, for any real number �, the probability that � = � 

�� � = � � = � = �( � ∈ Ω  �(�) = �})

For a RV �: Ω → ℝ, the cumulative distribution function (cdf) of �
specifies, for any real number �, the probability that � ≤ � 

�� � = � � ≤ �

Definitions:

∑ �� � = 1��∈��



Review Expected Value of a Random Variable

Definition. Given a discrete RV �: Ω → ℝ, the expectation or expected 
value or mean of � is   

 � = ! � � ⋅ � (�)
�

#∈�
or equivalently
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Intuition: “Weighted average” of the possible outcomes (weighted by probability)

= ! � ⋅ ��(�)
�

�∈��
 � = ! � ⋅ � (� = �)

�

�∈$(�)



Expectation
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Example. Two fair coin flipsΩ = TT, HT, TH, HH
� = number of heads

 � = 0 ⋅ �� 0 + 1 ⋅ �� 1 + 2 ⋅ ��(2)

0

= 0 ⋅ 1
4 + 1 ⋅ 1

2 + 2 ⋅ 1
4 = 1

2 + 1
2 = 1

What is  [�]?



Another Interpretation

7

“If � is how much you win playing the game in one round. How much 
would you expect to win, on average, per game, when repeatedly 
playing?”

Answer:  [�]



Roulette (USA)
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Ω:
Numbers 1-36
• 18 Red
• 18 Black
Green 0 and 00

RV RED:   If Red number turns up +1,  if Black number, 0, or 00 turns up −1
RVs for gains from some bets:

RV 1st12:   If number 1-12 turns up +2,  if number 13-36, 0, or 00 turns up −1
 ./0 = +1 ⋅ 18

38 + −1 ⋅ 20
38 = − 2

38 ≈ −5.26%

Note 0 and 00 are not EVEN

         = +2 ⋅ 12
38 + −1 ⋅ 26

38 = − 2
38 ≈ −5.26%1st12



Roulette (USA)
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Ω:
Numbers 1-36
• 18 Red
• 18 Black
Green 0 and 00

RV BASKET:   If 0, 00, 1, 2, or 3 turns up +6 otherwise −1
An even worse bet:

 BASKET = +6 ⋅ 5
38 + −1 ⋅ 33

38 = − 3
38 ≈ −7.89%

Note 0 and 00 are not EVEN



Example: Returning Homeworks

• Class with 3 students, randomly hand back homeworks.       
All permutations equally likely.

• Let � be the number of students who get their own HW
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?@ A A B(A)
1/6 1, 2, 3 3
1/6 1, 3, 2 1
1/6 2, 1, 3 1
1/6 2, 3, 1 0
1/6 3, 1, 2 0
1/6 3, 2, 1 1

 � = 3 ⋅ 1
6 + 1 ⋅ 1

6 + 1 ⋅ 1
6 + 0 ⋅ 1

6 + 0 ⋅ 1
6 + 1 ⋅ 1

6
= 6 ⋅ 1

6 = 1



Example – Flipping a biased coin until you see heads

• Biased coin:

� D = E > 0
�(G) = 1 − E

• H = # of coin flips until first head
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E
1 − E

E
1 − E E

1 − E E
1 − E …

1 − E �E
1 − E �E

1 − E EE

 H = ! I ⋅ � H = I = ! I ⋅ E 1 − E �J�
K

�L�
 

K

�L� Converges, so  H is finite

Can calculate this directly but…

�(H = I) = E 1 − E �J�



Example – Flipping a biased coin until you see heads

• Biased coin:

� D = E > 0
�(G) = 1 − E

• H = # of coin flips until first head
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E
1 − E

E
1 − E E

1 − E E
1 − E …

1 − E �E
1 − E �E

1 − E EE

 H = E + (1 − E)(1 +  H )
Another view:  If you get heads first try you get H = 1; 

If you get tails you have used one try and have the same experiment left

Solving gives    E ⋅  H = E + 1 − E = 1 Implies  H = 1/E



Expected Value of �= # of heads
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Two fair coins

� DD = � GG = 0.4� DG = � GD = 0.1

Attached coins

� DG = � GD = 0.5� DD = � GG = 0

Glued coins

� DG = � GD = 0.25� DD = � GG = 0.25

Each coin shows up heads half the time.

 X = 1 ⋅ 1
2 + 2 ⋅ 1

4 = 1  X = 1 ⋅ 1 = 1  X = 1 ⋅ 0.2 + 2 ⋅ 0.4 = 1



Linearity of Expectation
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Theorem. For any two random variables � and N
(�, N do not need to be independent)

 [� + N] =  [�] +  [N].   

Or, more generally: For any random variables ��, … , �P,

 [�� + ⋯ + �P] =  [��] + ⋯ +  [�P].   

Because:  [�� + ⋯ + �P] =  [(��+ ⋯ + �PJ�) + �P]
=  [�� + ⋯ + �PJ�] +  [�P] = ⋯



Linearity of Expectation – Proof 
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 [� + N] = ∑ �(�)(� � + N(�))�#

=  [�] +  [N]
= ∑ � � � � +�# ∑ � � N ��#

Theorem. For any two random variables � and N
(�, N do not need to be independent)

 [� + N] =  [�] +  [N].   



Example – Coin Tosses

We flip R coins, each one heads with probability �
H is the number of heads, what is  (H)?   
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 H = ! S ⋅ �(H = S)
P

TLU

Can we solve it more 
elegantly, please?

This Photo by Unknown Author is 

licensed under CC BY-NC

Example – Coin Tosses – The brute force method 

We flip R coins, each one heads with probability �, 
H is the number of heads, what is  +H,?   

= ! S ⋅ R!
S! R - S ! �T 1 - � PJT

P

TLU
= ! R!

(S - 1)! R - S ! �T 1 - � PJT
P

TL�

= R� ! (R - 1)!
(S - 1)! R - S ! �TJ� 1 - � PJT

P

TL�

= R� ! (R - 1)!
S! R - 1 - S ! �T 1 - � (PJ�)JT

PJ�

TLU

= R� ! R - 1
S  �T 1 - � (PJ�)JT

PJ�

TLU
= R� � ( 1 - � PJ� = R� ⋅ 1 = R�

= ! S ⋅ R
S �T 1 - � PJT

P

TLU



Computing complicated expectations

Often boils down to the following three steps:

● Decompose: Finding the right way to decompose the random variable 
into sum of simple random variables 

� =  �� + ⋯ + �P
● LOE: Apply linearity of expectation.

 +�, =  +��, ( ⋯ (  +�P,.   
● Conquer: Compute the expectation of each ��

Often, �� are indicator (0/1) random variables.



Indicator random variables

For any event W, can define the indicator random variable �X for W
               �X = Y1     if event W occurs                0     if event W does not occur � �X = 1 = � W        � �X = 0 = 1 − � W

WΩ
1

0
0.05

0.3

0.2

0

0.05

0.1

0.3

0.55

0.45

ℝ



Example – Coin Tosses

We flip R coins, each one heads with probability �
H is the number of heads, what is  +H,?   

- �� = Y1, Ith coin flip is heads 0, Ith coin flip is tails.  
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� �� = 1 = �� �� = 0 = 1 − �

Fact. H = �� + ⋯ + �P

 [��] = � ⋅ 1 + 1 − � ⋅ 0 = �

Linearity of Expectation: [H] =  [�� + ⋯ + �P] =  [��] + ⋯ +  [�P] = R ⋅ �
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Example: Returning Homeworks

• Class with R students, randomly hand back homeworks.       All 
permutations equally likely.

• Let � be the number of students who get their own HW

What is  +�,? Use linearity of expectation!
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?@ A A B(A)
1/6 1, 2, 3 3
1/6 1, 3, 2 1
1/6 2, 1, 3 1
1/6 2, 3, 1 0
1/6 3, 1, 2 0
1/6 3, 2, 1 1

�� = 1 iff  Ijℎ student gets own HW back

LOE:  [�] =  [��] + ⋯ +  [�P]
Conquer: What is  [��]? A. 

�
P B. 

�
PJ� C. 

�
�

Poll: pollev.com/paulbeame028

Decompose: What is ��?



Pairs with the same  birthday

● In a class of l students, on average how many pairs of people have 
the same birthday (assuming 365 equally likely birthdays)?

Decompose: Indicator events involve pairs of students (I, m) for I ≠ m��o = 1  iff students I and m have the same birthday

LOE:   
l2 indicator variables ��o

Conquer:      ��o = �
�pq so total expectation is   

r��pq = r(rJ�)
s�U pairs



Linearity of Expectation – Even stronger
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Theorem. For any random variables ��, … , �P, and real numbers t�, … , tP ∈ ℝ,

 [t��� + ⋯ + tP�P] = t� [��] + ⋯ + tP [�P].   

Very important: In general, we do not have  [� ⋅ N] =  [�] ⋅  [N]



Linearity is special!

In general  u(�) ≠ u  �

E.g., � = Y +1 with prob 1/2−1 with prob 1/2
Then:  [��] ≠  [�]�

How DO we compute  [u � ]? 



Expected Value of u(�)
Definition. Given a discrete RV �: Ω → ℝ, the expectation or expected 
value or mean of u(�) is   

 u(�) = ! u � � ⋅ � (�)
�

#∈�
or equivalently
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= ! u(�) ⋅ ��(�)
�

�∈��
 u(�) = ! u(�) ⋅ � (� = �)

�

�∈$(�)
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