CSE 312 Foundations of Computing II

Lecture 8: Linearity of Expectation

Last Class:

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Today:

- More Expectation Examples
- Linearity of Expectation
- Indicator Random Variables

Kandinsky

Review Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \rightarrow \mathbb{R}$.

The set of values that X can take on is its range/support: $X(\Omega)$ or Ω_{X}
$\left\{X=x_{i}\right\}=\left\{\omega \in \Omega \mid X(\omega)=x_{i}\right\}$
Random variables partition the sample space.

$$
\Sigma_{x \in X(\Omega)} P(X=x)=1
$$

Review PMF and CDF

Definitions:

For a RV $X: \Omega \rightarrow \mathbb{R}$, the probability mass function (pmf) of X specifies, for any real number x, the probability that $X=x$

$$
p_{X}(x)=P(X=x)=P(\{\omega \in \Omega \mid X(\omega)=x\})
$$

$$
\sum_{x \in \Omega_{X}} p_{X}(x)=1
$$

For a RV $X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function (cdf) of X specifies, for any real number x, the probability that $X \leq x$

$$
F_{X}(x)=P(X \leq x)
$$

Review Expected Value of a Random Variable

Definition. Given a discrete $\operatorname{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of X is

$$
\mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[X]=\sum_{x \in \mathrm{X}(\Omega)} x \cdot P(X=x)=\sum_{x \in \Omega_{X}} x \cdot p_{X}(x)
$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Expectation

Example. Two fair coin flips
$\Omega=\{\mathrm{TT}, \mathrm{HT}, \mathrm{TH}, \mathrm{HH}\}$

What is $\mathbb{E}[X]$?

$X=$ number of heads

$$
\begin{array}{rl}
\mathbb{E}[X]= & 0 \cdot p_{X}(0)+1 \cdot p_{X}(1)+2 \cdot p_{X}(2) \\
& =0 \cdot \frac{1}{4}+1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}=\frac{1}{2}+\frac{1}{2}=1 \\
0 & 6
\end{array}
$$

Another Interpretation

"If X is how much you win playing the game in one round. How much would you expect to win, on average, per game, when repeatedly playing?"
Answer: $\mathbb{E}[X]$

Roulette (USA)

$\Omega:$
Numbers 1-36

- 18 Red
- 18 Black

Green o and oo

Note o and $o o$ are not EVEN

RVs for gains from some bets:
RV RED: If Red number turns up +1 , if Black number, 0 , or oo turns up -1

$$
\mathbb{E}[\operatorname{RED}]=(+1) \cdot \frac{18}{38}+(-1) \cdot \frac{20}{38}=-\frac{2}{38} \approx-5.26 \%
$$

RV 1 ${ }^{\text {st1 }} 12$: If number 1-12 turns up +2 , if number 13-36, o, or oo turns up -1

$$
\mathbb{E}\left[1^{s \mathrm{st}} 12\right]=(+2) \cdot \frac{12}{38}+(-1) \cdot \frac{26}{38}=-\frac{2}{38} \approx-5.26 \%
$$

Roulette (USA)

Ω :
Numbers 1-36

- 18 Red
- 18 Black

Green 0 and 00
An even worse bet:

Note o and 00 are not EVEN

RV BASKET: If $0,00,1,2$, or 3 turns up +6 otherwise -1

$$
\mathbb{E}[\text { BASKET }]=(+6) \cdot \frac{5}{38}+(-1) \cdot \frac{33}{38}=-\frac{3}{38} \approx-7.89 \%
$$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

$$
\begin{aligned}
\mathbb{E}[X] & =3 \cdot \frac{1}{6}+1 \cdot \frac{1}{6}+1 \cdot \frac{1}{6}+0 \cdot \frac{1}{6}+0 \cdot \frac{1}{6}+1 \cdot \frac{1}{6} \\
& =6 \cdot \frac{1}{6}=1
\end{aligned}
$$

Example - Flipping a biased coin until you see heads

- Biased coin:

$$
\begin{aligned}
& P(H)=q>0 \\
& P(T)=1-q
\end{aligned}
$$

- $Z=\#$ of coin flips until first head

$$
\begin{aligned}
& P(Z=i)=q(1-q)^{i-1} \\
& \mathbb{E}[Z]=\sum_{i=1}^{\infty} i \cdot P(Z=i)=\sum_{i=1}^{\infty} i \cdot q(1-q)^{i-1}
\end{aligned}
$$

$$
\text { Converges, so } \mathbb{E}[Z] \text { is finite }
$$

Can calculate this directly but...

Example - Flipping a biased coin until you see heads

- Biased coin:

$$
\begin{aligned}
& P(H)=q>0 \\
& P(T)=1-q
\end{aligned}
$$

Another view: If you get heads first try you get $Z=1$; If you get tails you have used one try and have the same experiment left

$$
\mathbb{E}[Z]=q+(1-q)(1+\mathbb{E}(Z))
$$

Solving gives $q \cdot \mathbb{E}[Z]=q+(1-q)=1$ Implies $\mathbb{E}[Z]=1 / q$

Expected Value of $X=$ \# of heads

Each coin shows up heads half the time.

Two fair coins

$P(H T)=P(T H)=0.25$
$P(H T)=P(T H)=0.5$
$P(H H)=P(T T)=0.25$
$P(H H)=P(T T)=0$
$\mathbb{E}(X)=1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}=1$

Glued coins

Attached coins

$$
\begin{aligned}
& P(H H)=P(T T)=0.4 \\
& P(H T)=P(T H)=0.1 \\
& \mathbb{E}(\mathrm{X})=1 \cdot 0.2+2 \cdot 0.4=1
\end{aligned}
$$

Linearity of Expectation

Theorem. For any two random variables X and Y
(X, Y do not need to be independent)

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] .
$$

Or, more generally: For any random variables X_{1}, \ldots, X_{n},

$$
\mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right] .
$$

Because: $\mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{E}\left[\left(X_{1}+\cdots+X_{n-1}\right)+X_{n}\right]$

$$
=\mathbb{E}\left[X_{1}+\cdots+X_{n-1}\right]+\mathbb{E}\left[X_{n}\right]=\cdots
$$

Linearity of Expectation - Proof

Theorem. For any two random variables X and Y
(X, Y do not need to be independent)

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] .
$$

$$
\begin{aligned}
\mathbb{E}[X+Y] & =\sum_{\omega} P(\omega)(X(\omega)+Y(\omega)) \\
& =\sum_{\omega} P(\omega) X(\omega)+\sum_{\omega} P(\omega) Y(\omega) \\
& =\mathbb{E}[X]+\mathbb{E}[Y]
\end{aligned}
$$

Example - Coin Tosses

We flip n coins, each one heads with probability p
Z is the number of heads, what is $\mathbb{E}(Z)$?

Example - Coin Tosses - The brute force method

We flip n coins, each one heads with probability p, Z is the number of heads, what is $\mathbb{E}[Z]$?

$$
\begin{aligned}
\mathbb{E}[Z] & =\sum_{k=0}^{n} k \cdot P(Z=k)=\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=0}^{n} k \cdot \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}=\sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^{k}(1-p)^{n-k}
\end{aligned}
$$

$$
=n p \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1}(1-p)^{n-k}
$$

$$
=n p \sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} p^{k}(1-p)^{(n-1)-k}
$$

$$
=n p \sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{(n-1)-k}=n p(p+(1-p))^{n-1}=n p \cdot 1=n p
$$

Computing complicated expectations

Often boils down to the following three steps:

- Decompose: Finding the right way to decompose the random variable into sum of simple random variables

$$
X=X_{1}+\cdots+X_{n}
$$

- LOE: Apply linearity of expectation.

$$
\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right] .
$$

- Conquer: Compute the expectation of each X_{i}

Often, X_{i} are indicator (o/1) random variables.

Indicator random variables

For any event A, can define the indicator random variable X_{A} for A

$$
X_{A}=\left\{\begin{array}{ll}
1 & \text { if event } A \text { occurs } \\
0 & \text { if event } A \text { does not occur }
\end{array} \begin{array}{l}
P\left(X_{A}=1\right)=P(A) \\
P\left(X_{A}=0\right)=1-P(A)
\end{array}\right.
$$

Example - Coin Tosses

We flip n coins, each one heads with probability p
Z is the number of heads, what is $\mathbb{E}[Z]$?

- $\quad X_{i}= \begin{cases}1, & i^{\text {th }} \text { coin flip is heads } \\ 0, & i^{\text {th }} \text { coin flip is tails. }\end{cases}$

Fact. $Z=X_{1}+\cdots+X_{n}$

Linearity of Expectation:

$$
\mathbb{E}[Z]=\mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]=n \cdot p
$$

$$
\begin{aligned}
& P\left(X_{i}=1\right)=p \\
& P\left(X_{i}=0\right)=1-p
\end{aligned}
$$

$$
\mathbb{E}\left[X_{i}\right]=p \cdot 1+(1-p) \cdot 0=p
$$

Kandinsky
This Photo by Unknown Author is licensed under CC BY-SA-NC

Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW What is $\mathbb{E}[X]$? Use linearity of expectation!

Decompose: What is X_{i} ?

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

$X_{i}=1$ iff $i^{\text {th }}$ student gets own HW back
LOE: $\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]$
Conquer: What is $\mathbb{E}\left[X_{i}\right]$?

$$
\text { A. } \frac{1}{n} \text { B. } \frac{1}{n-1} \text { C. } \frac{1}{2}
$$

Poll: pollev.com/paulbeame028

Pairs with the same birthday

- In a class of m students, on average how many pairs of people have the same birthday (assuming 365 equally likely birthdays)?

Decompose: Indicator events involve pairs of students (i, j) for $i \neq j$

$$
X_{i j}=1 \text { iff students } i \text { and } j \text { have the same birthday }
$$

LOE: $\binom{m}{2}$ indicator variables $X_{i j}$
Conquer: $\mathbb{E}\left[X_{i j}\right]=\frac{1}{365}$ so total expectation is $\frac{\binom{m}{2}}{365}=\frac{m(m-1)}{730}$ pairs

Linearity of Expectation - Even stronger

Theorem. For any random variables X_{1}, \ldots, X_{n}, and real numbers $a_{1}, \ldots, a_{n} \in \mathbb{R}$,

$$
\mathbb{E}\left[a_{1} X_{1}+\cdots+a_{n} X_{n}\right]=a_{1} \mathbb{E}\left[X_{1}\right]+\cdots+a_{n} \mathbb{E}\left[X_{n}\right] .
$$

Very important: In general, we do not have $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Linearity is special!

In general $\mathbb{E}[g(X)] \neq g(\mathbb{E}(X))$
E.g., $X=\left\{\begin{array}{l}+1 \text { with prob } 1 / 2 \\ -1 \text { with prob } 1 / 2\end{array}\right.$

Then: $\mathbb{E}\left[X^{2}\right] \neq \mathbb{E}[X]^{2}$

How DO we compute $\mathbb{E}[g(X)]$?

Expected Value of $g(X)$

Definition. Given a discrete $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of $g(X)$ is

$$
\mathbb{E}[g(X)]=\sum_{\omega \in \Omega} g(X(\omega)) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[g(X)]=\sum_{x \in \mathrm{X}(\Omega)} g(x) \cdot P(X=x)=\sum_{x \in \Omega_{X}} g(x) \cdot p_{X}(x)
$$

Kandinsky

