CSE 312 Foundations of Computing II

Lecture 9: Variance and Independence of RVs

Recap Linearity of Expectation

Theorem. For any two random variables X and Y (X, Y do not need to be independent)

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] .
$$

Theorem. For any random variables X_{1}, \ldots, X_{n},

$$
\mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right] .
$$

For any event A, can define the indicator random variable X for A

$$
X_{A}=\left\{\begin{array}{lll}
1 & \text { if event } A \text { occurs } & P\left(X_{A}=1\right)=P(A) \\
0 & \text { if event } A \text { does not occur } & P\left(X_{A}=0\right)=1-P(A)
\end{array}\right.
$$

$$
\begin{aligned}
E\left[X_{A}\right]= & 0 \cdot P\left(X_{A}=0\right) \\
& +1 \cdot P\left(X_{A}=1\right)=\rho(A)
\end{aligned}
$$

Pairs with the same birthday

- In a class of m students, on average how manypairs of people have the same birthday (assuming 365 equally likely birthdays)?
- Call this number X

Decompose: Indicator events involve pairs of students (i, j) for $i \neq j$
$X_{i j}=1$ iff students i and j have the same birthday
LOE: $\binom{m}{2}$ indicator variables $X_{i j} \quad \begin{aligned} & X=\sum_{i \neq j} X_{i j}\end{aligned} \mathbb{E}\left[X_{i j}\right]=\frac{1}{365}$
Conquer: $\quad \mathbb{E}\left[X_{i j}\right]=\frac{1}{365}$ so total expectation is $\frac{\binom{m}{2}}{365}=\frac{m(m-1)}{730}$ pairs

Linearity of Expectation - Even stronger

$$
\begin{aligned}
& \mathbb{E}[J x+1]=5 \cdot \mathbb{E}(x) \\
& +1
\end{aligned}
$$

Theorem. For any random variables X_{1}, \ldots, X_{n}, and real numbers $a_{1}, \ldots, a_{n} \in \mathbb{R}$,

$$
\mathbb{E}\left[a_{1} X_{1}+\cdots+a_{n} X_{n}\right]=a_{1} \mathbb{E}\left[X_{1}\right]+\cdots+a_{n} \mathbb{E}\left[X_{n}\right] .
$$

Very important: In general, we do not have $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Linearity is special!

In general $\underbrace{\mathbb{E}[g(X)}] \neq g(\mathbb{E}(X))$
E.g., $X=\left\{\begin{array}{l}+1 \text { with prob } 1 / 2 \\ -1 \text { with prob } 1 / 2\end{array}\right.$

Then: $\mathbb{E}\left[X^{2}\right] \neq \mathbb{E}[X]^{2}$
How DO we compute $\mathbb{E}[g(X)]$?

$$
\begin{aligned}
& \mathbb{E}[x]=0 \\
& x^{2}=1 \\
& \mathbb{E}\left[x^{2}\right]=1
\end{aligned}
$$

Expected Value of $g(X)$

Definition. Given a discrete RV $X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of $g(X)$ is

$$
\mathbb{E}[g(X)]=\sum_{\omega \in \Omega} g(X(\omega)) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[g(X)]=\sum_{x \in \mathrm{X}(\Omega)} g(x) \cdot P(X=x)=\sum_{x \in \Omega_{X}} g(x) \cdot p_{X}(x)
$$

Also known as LOTUS: "Law of the unconscious statistician
(nothing special going on in the discrete case)

Example: Expectation of $g(X)$

Suppose we rolled a fair, 6 -sided die in a game. You will win the cube of the number rolled in dollars, times 10. Let X be the result of the dice roll. What is your expected winnings?
$\mathbb{E}\left[10 X^{3}\right]=10 \cdot \mathbb{E}\left[x^{3}\right]=10\left(\frac{1}{6} 1^{3}+\frac{1}{6} \cdot 2^{3}+\frac{1}{6} \cdot 3^{3}+\frac{1}{6} \cdot 4^{3}+\frac{1}{6} 5\right.$
$10 \sum_{k=1}^{6} k^{3} \cdot \frac{1}{6}$

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Two Games

Game 1: In every round, you win $\$ 2$ with probability $1 / 3$, lose $\$ 1$ with probability $2 / 3$.
$W_{1}=$ payoff in a round of Game 1

$$
P\left(W_{1}=2\right)=\frac{1}{3}, P\left(W_{1}=-1\right)=\frac{2}{3}
$$

$$
\mathbb{E}\left[W_{1}\right]=0
$$

Game 2: In every round, you win \$10 with probability 1/3, lose \$5 with probability $2 / 3$.

$$
\begin{aligned}
& W_{2}=\text { payoff in a round of Game } 2 \\
& P\left(W_{2}=10\right)=\frac{1}{3}, P\left(W_{2}=-5\right)=\frac{2}{3}
\end{aligned}
$$

$$
\mathbb{E}\left[W_{2}\right]=0
$$

Which game would you rather play?

Somehow, Game 2 has higher volatility / exposure!

$P\left(W_{1}=2\right)=\frac{1}{3}, P\left(W_{1}=-1\right)=\frac{2}{3}$

$P\left(W_{2}=10\right)=\frac{1}{3}, P\left(W_{2}=-5\right)=\frac{2}{3}$

Same expectation, but clearly a very different distribution.
We want to capture the difference - New concept: Variance

Variance (Intuition, First Try)

New quantity (random variable): How far from the expectation?

$$
\begin{aligned}
\frac{\Delta\left(W_{1}\right)}{}=\underbrace{W_{1}-\mathbb{E}\left[W_{1}\right]}) \mathbb{E}\left[\Delta\left(W_{1}\right)\right] & =\mathbb{E}\left[W_{1}-\mathbb{E}\left[W_{1}\right]\right] \\
& \left|W_{1}-\mathbb{E}\left[W_{1}\right]\right|^{2} \\
& =\mathbb{E}\left[W_{1}\right]-\mathbb{E}\left[\mathbb{E}\left[W_{1}\right]\right] \\
\left(W_{1}-\mathbb{E}\left[W_{1}\right)\right)^{2} & \\
& =\mathbb{E}\left[W_{1}\right]-\mathbb{E}\left[W_{1}\right] \\
&
\end{aligned}
$$

Variance (Intuition, Better Try)

$$
\mathbb{E}\left[W_{1}\right]=0
$$

A better quantity (random variable): How far from the expectation?
$\Delta\left(W_{1}\right)=\frac{\left(\left(W_{1}-\mathbb{E}\left[W_{1}\right]\right)^{2}\right.}{2}$

$$
\begin{aligned}
\mathbb{E}\left[\Delta\left(W_{1}\right)\right] & =\mathbb{E}\left[\left(W_{1}-\mathbb{E}\left[W_{1}\right]\right)^{2}\right] \\
& =\frac{2}{3} \cdot 1+\frac{1}{3} \cdot 4 \\
& =2
\end{aligned}
$$

Variance (Intuition, Better Try)

A better quantity (random variable): How far from the expectation?

$$
\begin{array}{lll}
\Delta\left(W_{2}\right)=\left(W_{2}-\mathbb{E}\left[W_{2}\right]\right)^{2} & \mathbb{E}\left[\Delta\left(W_{2}\right)\right]=\mathbb{E}\left[\left(W_{2}-\mathbb{E}\left[W_{2}\right]\right)^{2}\right] & \begin{array}{l}
\frac{\text { Poll: }}{\text { pollev.com/paulbe }} \\
\text { ameo28 }
\end{array} \\
\mathbb{P}\left(\Delta\left(W_{2}\right)=25\right)=\frac{2}{3} & =\frac{2}{3} \cdot 25+\frac{1}{3} \cdot 100 & \begin{array}{l}
\text { A. } 0 \\
\mathbb{P}\left(\Delta\left(W_{2}\right)=100\right)=\frac{1}{3}
\end{array} \\
& =50 & \text { B. } 20 / 3 \\
& & \text { C. } 50 \\
& &
\end{array}
$$

We say that W_{2} has "higher variance" than W_{1}.

Variance

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2}
$$

Standard deviation: $\sigma(X)=\sqrt{\operatorname{Var}(X)}$

$$
\begin{aligned}
& \text { Recall } \mathbb{E}[X] \text { is a } \\
& \text { constant, not a random } \\
& \text { variable itself. }
\end{aligned}
$$

Intuition: Variance (or standard deviation) is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance - Example 1

X fair die

- $P(X=1)=\cdots=P(X=6)=1 / 6$
- $\mathbb{E}[X]=3.5$
$\operatorname{Var}(\mathrm{X})=?$

Variance - Example 1

X fair die

- $P(X=1)=\cdots=P(X=6)=1 / 6$
- $\mathbb{E}[X]=3.5$
$\operatorname{Var}(\mathrm{X})=\sum_{x} P(X=x) \cdot(x-\mathbb{E}[X])^{2}$
$=\frac{1}{6}\left[(1-3.5)^{2}+(2-3.5)^{2}+(3-3.5)^{2}+(4-3.5)^{2}+(5-3.5)^{2}+(6-3.5)^{2}\right]$
$=\frac{2}{6}\left[2.5^{2}+1.5^{2}+0.5^{2}\right]=\frac{2}{6}\left[\frac{25}{4}+\frac{9}{4}+\frac{1}{4}\right]=\frac{35}{12} \approx 2.91677 \ldots$

Variance in Pictures

Captures how much "spread' there is in a pmf

All pmfs have same expectation
$\sigma^{2}=5.83$

$$
\sigma^{2}=10
$$

$$
\sigma^{2}=15
$$

$$
\sigma^{2}=19.7
$$

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Variance - Properties

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2}
$$

Theorem. For any $a, b \in \mathbb{R}, \operatorname{Var}(a \cdot X+b)=a^{2} \cdot \operatorname{Var}(X)$
(Proof: Exercise!)

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Variance

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Proof: $\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] \quad$ Recall $\mathbb{E}[X]$ is a constant

$$
\begin{aligned}
& =\mathbb{E}\left[X^{2}-2 \mathbb{E}[X] \cdot X+\mathbb{E}[X]^{2}\right] \\
& =\mathbb{E}\left(X^{2}\right)-2 \mathbb{E}[X] \mathbb{E}[X]+\mathbb{E}[X]^{2} \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} \quad \quad \text { (linearity of expectation!) } \\
&
\end{aligned}
$$

Variance - Example 1

X fair die

- $\mathbb{P}(X=1)=\cdots=\mathbb{P}(X=6)=1 / 6$
- $\mathbb{E}[X]=\frac{21}{6}$
- $\mathbb{E}\left[X^{2}\right]=\frac{91}{6}$
$\operatorname{Var}(\mathrm{X})=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\frac{91}{6}-\left(\frac{21}{6}\right)^{2}=\frac{105}{36} \approx 2.91677$

