CSE 312

Foundations of Computing II

Lecture 9: Variance and Independence of RVs

Recap Linearity of Expectation

Theorem. For any two random variables X and Y (X, Y do not need to be independent)

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y].$$

Theorem. For any random variables $X_1, ..., X_n$,

$$\mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$$

For any event A, can define the indicator random variable X for A

$$X_A = \begin{cases} 1 & \text{if event } A \text{ occurs} \\ 0 & \text{if event } A \text{ does not occur} \end{cases}$$

$$P(X_A = 1) = P(A)$$

 $P(X_A = 0) = 1 - P(A)$

Pairs with the same birthday

- In a class of m students, on average how many pairs of people have the same birthday (assuming 365 equally likely birthdays)?
- Call this number X

Decompose: Indicator events involve **pairs** of students (i,j) for $i \neq j$ $X_{ij} = 1$ iff students i and j have the same birthday

LOE:
$$\binom{m}{2}$$
 indicator variables X_{ij} $X = \sum_{i \neq j} X_{ij}$

Conquer:
$$\mathbb{E}[X_{ij}] = \frac{1}{365}$$
 so total expectation is $\frac{\binom{m}{2}}{365} = \frac{m(m-1)}{730}$ pairs

Linearity of Expectation – Even stronger

Theorem. For any random variables $X_1, ..., X_n$, and real numbers $a_1, ..., a_n \in \mathbb{R}$,

$$\mathbb{E}[a_1X_1 + \dots + a_nX_n] = a_1\mathbb{E}[X_1] + \dots + a_n\mathbb{E}[X_n].$$

Very important: In general, we do <u>not</u> have $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Linearity is special!

In general $\mathbb{E}[g(X)] \neq g(\mathbb{E}(X))$

E.g.,
$$X = \begin{cases} +1 \text{ with prob } 1/2 \\ -1 \text{ with prob } 1/2 \end{cases}$$

Then: $\mathbb{E}[X^2] \neq \mathbb{E}[X]^2$

How DO we compute $\mathbb{E}[g(X)]$?

Expected Value of g(X)

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the **expectation** or **expected** value or mean of g(X) is

$$\mathbb{E}[g(X)] = \sum_{\omega \in \Omega} g(X(\omega)) \cdot P(\omega)$$

or equivalently

$$\mathbb{E}[g(X)] = \sum_{x \in X(\Omega)} g(x) \cdot P(X = x) = \sum_{x \in \Omega_X} g(x) \cdot p_X(x)$$

Also known as **LOTUS**: "Law of the unconscious statistician

(nothing special going on in the discrete case)

Example: Expectation of g(X)

Suppose we rolled a fair, 6-sided die in a game. You will win the cube of the number rolled in dollars, times 10. Let X be the result of the dice roll.

What is your expected winnings?

$$\mathbb{E}[10X^3] =$$

$$10\sum_{k=1}^{6} k^3 \cdot \frac{1}{6}$$

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Two Games

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

$$W_1$$
 = payoff in a round of Game 1

$$P(W_1 = 2) = \frac{1}{3}$$
, $P(W_1 = -1) = \frac{2}{3}$

$$\mathbb{E}[W_1] = 0$$

Game 2: In every round, you win \$10 with probability 1/3, lose \$5 with probability 2/3.

 W_2 = payoff in a round of Game 2

$$P(W_2 = 10) = \frac{1}{3}$$
, $P(W_2 = -5) = \frac{2}{3}$

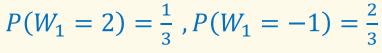
$$\mathbb{E}[W_2] = 0$$

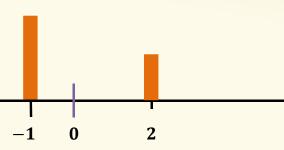
Which game would you <u>rather</u> play?

Somehow, Game 2 has higher volatility / exposure!

Two Games

2/3





$$P(W_2 = 10) = \frac{1}{3}$$
, $P(W_2 = -5) = \frac{2}{3}$

Same expectation, but clearly a very different distribution.

We want to capture the difference – New concept: Variance

Variance (Intuition, First Try)

$$P(W_1 = 2) = \frac{1}{3}$$
, $P(W_1 = -1) = \frac{2}{3}$ 1/3

New quantity (random variable): How far from the expectation?

$$\Delta(W_1) = W_1 - \mathbb{E}[W_1]$$

$$\mathbb{E}[\Delta(W_1)] = \mathbb{E}[W_1 - \mathbb{E}[W_1]]$$

$$= \mathbb{E}[W_1] - \mathbb{E}[\mathbb{E}[W_1]]$$

$$= \mathbb{E}[W_1] - \mathbb{E}[W_1]$$

$$= 0$$

Variance (Intuition, Better Try)

$$P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$$

$$1/3$$

$$E[W_1] = 0$$

$$1/3$$

A better quantity (random variable): How far from the expectation?

$$\Delta(W_1) = (W_1 - \mathbb{E}[W_1])^2$$

$$P(\Delta(W_1) = 1) = \frac{2}{3}$$

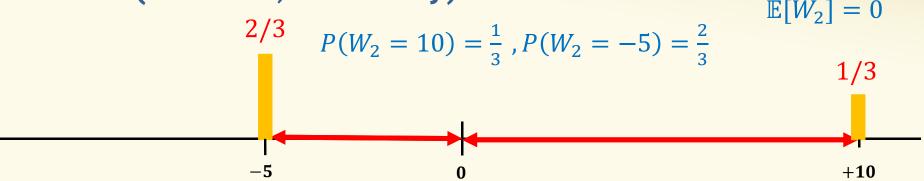
$$P(\Delta(W_1) = 4) = \frac{1}{3}$$

$$\mathbb{E}[\Delta(W_1)] = \mathbb{E}[(W_1 - \mathbb{E}[W_1])^2]$$

$$= \frac{2}{3} \cdot 1 + \frac{1}{3} \cdot 4$$

$$= 2$$

Variance (Intuition, Better Try)



A better quantity (random variable): How far from the expectation?

$$\Delta(W_2) = (W_2 - \mathbb{E}[W_2])^2$$

$$\mathbb{P}(\Delta(W_2) = 25) = \frac{2}{3}$$

$$\mathbb{P}(\Delta(W_2) = 100) = \frac{1}{3}$$

$$\mathbb{E}[\Delta(W_2)] = \mathbb{E}[(W_2 - \mathbb{E}[W_2])^2]$$

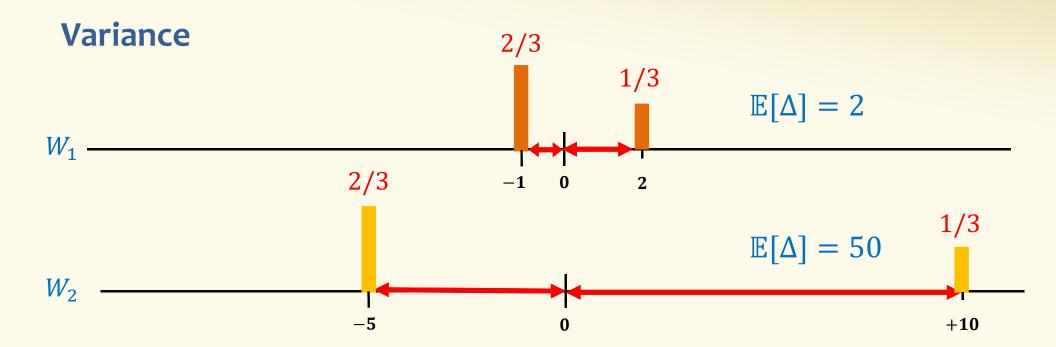
$$= \frac{2}{3} \cdot 25 + \frac{1}{3} \cdot 100$$

$$= 50$$

Poll: pollev.com/paulbe ameo28

- **A.** 0
- B. 20/3
- **C.** 50
- D. 2500

13



We say that W_2 has "higher variance" than W_1 .

Variance

Definition. The **variance** of a (discrete) RV *X* is

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_{x} p_X(x) \cdot (x - \mathbb{E}[X])^2$$

Standard deviation: $\sigma(X) = \sqrt{\operatorname{Var}(X)}$

Recall $\mathbb{E}[X]$ is a **constant**, not a random variable itself.

Intuition: Variance (or standard deviation) is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance – Example 1

X fair die

- $P(X = 1) = \cdots = P(X = 6) = 1/6$
- $\mathbb{E}[X] = 3.5$

$$Var(X) = ?(x - E(X))^2$$

Variance – Example 1

X fair die

- $P(X = 1) = \cdots = P(X = 6) = 1/6$
- $\mathbb{E}[X] = 3.5$

$$Var(X) = \sum_{x} P(X = x) \cdot (x - \mathbb{E}[X])^{2}$$

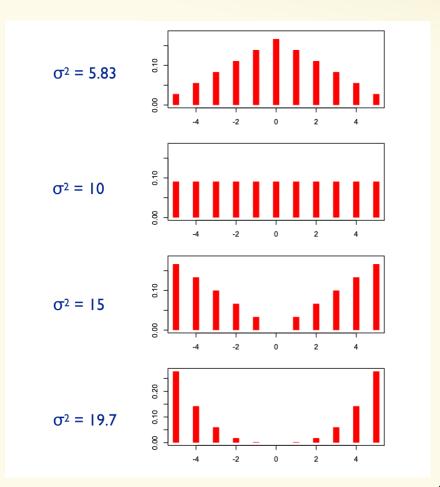
$$= \frac{1}{6}[(1-3.5)^2 + (2-3.5)^2 + (3-3.5)^2 + (4-3.5)^2 + (5-3.5)^2 + (6-3.5)^2]$$

$$= \frac{2}{6}[2.5^2 + 1.5^2 + 0.5^2] = \frac{2}{6}\left[\frac{25}{4} + \frac{9}{4} + \frac{1}{4}\right] = \frac{35}{12} \approx 2.91677 \dots$$

Variance in Pictures

Captures how much "spread' there is in a pmf

All pmfs have same expectation



Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Variance – Properties

Definition. The **variance** of a (discrete) RV *X* is

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_{x} p_X(x) \cdot (x - \mathbb{E}[X])^2$$

Theorem. For any $a, b \in \mathbb{R}$, $Var(a \cdot X + b) = a^2 \cdot Var(X)$

(Proof: Exercise!)

Theorem. $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Variance

Theorem. $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Proof: Var(X) =
$$\mathbb{E}[(X - \mathbb{E}[X])^2]$$
 Recall $\mathbb{E}[X]$ is a constant
$$= \mathbb{E}[X^2 - 2\mathbb{E}[X] \cdot X + \mathbb{E}[X]^2]$$

$$= \mathbb{E}(X^2) - 2\mathbb{E}[X]\mathbb{E}[X] + \mathbb{E}[X]^2$$

$$= \mathbb{E}[X^2] - \mathbb{E}[X]^2$$
 (linearity of expectation!)
$$\mathbb{E}[X^2] \text{ and } \mathbb{E}[X]^2$$
are different!

Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}[X] = \frac{21}{6}$
- $\mathbb{E}[X^2] = \frac{91}{6}$

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{91}{6} - \left(\frac{21}{6}\right)^2 = \frac{105}{36} \approx 2.91677$$

Variance of Indicator Random Variables

Suppose that X_A is an indicator RV for event A with P(A) = p so

$$\mathbb{E}[X_A] = P(A) = p$$

Since X_A only takes on values 0 and 1, we always have $X_A^2 = X_A$ so

$$Var(X_A) = \mathbb{E}[X_A^2] - \mathbb{E}[X_A]^2 = \mathbb{E}[X_A] - \mathbb{E}[X_A]^2 = p - p^2 = p(1-p)$$

In General,
$$Var(X + Y) \neq Var(X) + Var(Y)$$

Proof by counter-example:

- Let X be a r.v. with pmf P(X = 1) = P(X = -1) = 1/2– What is $\mathbb{E}[X]$ and Var(X)?
- Let Y = -X
 - What is $\mathbb{E}[Y]$ and Var(Y)?

What is Var(X + Y)?

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Random Variables and Independence

Comma is shorthand for AND

Definition. Two random variables X, Y are (mutually) independent if for all x, y,

$$P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$$

Intuition: Knowing *X* doesn't help you guess *Y* and vice versa

Definition. The random variables $X_1, ..., X_n$ are (mutually) independent if for all $x_1, ..., x_n$,

$$P(X_1 = x_1, ..., X_n = x_n) = P(X_1 = x_1) \cdots P(X_n = x_n)$$

Note: No need to check for all subsets, but need to check for all outcomes!

Example

Let X be the number of heads in n independent coin flips of the same coin. Let $Y = X \mod 2$ be the parity (even/odd) of X. Are X and Y independent?

Poll: pollev.com/paulbeameo28

- A. Yes
- B. No

Example

Make 2n independent coin flips of the same coin.

Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips.

Are *X* and *Y* independent?

Poll:

pollev.com/paulbeameo28

A. Yes

B. No

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, Var(X + Y) = Var(X) + Var(Y)

Corollary. If $X_1, X_2, ..., X_n$ mutually independent,

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var}(X_i)$$

(Not Covered) Proof of $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Proof

Let x_i , y_i , i = 1, 2, ...be the possible values of X, Y.

$$\mathbb{E}[X \cdot Y] = \sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P(X = x_{i} \land Y = y_{j})$$
independence
$$= \sum_{i} \sum_{j} x_{i} \cdot y_{i} \cdot P(X = x_{i}) \cdot P(Y = y_{j})$$

$$= \sum_{i} x_{i} \cdot P(X = x_{i}) \cdot \left(\sum_{j} y_{j} \cdot P(Y = y_{j})\right)$$

$$= \mathbb{E}[X] \cdot \mathbb{E}[Y]$$

Note: NOT true in general; see earlier example $\mathbb{E}[X^2] \neq \mathbb{E}[X]^2$

(Not Covered) Proof of Var(X + Y) = Var(X) + Var(Y)

Theorem. If X, Y independent, Var(X + Y) = Var(X) + Var(Y)

Proof
$$Var(X + Y)$$

$$= \mathbb{E}[(X + Y)^{2}] - (\mathbb{E}[X + Y])^{2}$$

$$= \mathbb{E}[X^{2} + 2XY + Y^{2}] - (\mathbb{E}[X] + \mathbb{E}[Y])^{2}$$

$$= \mathbb{E}[X^{2}] + 2 \mathbb{E}[XY] + \mathbb{E}[Y^{2}] - (\mathbb{E}[X]^{2} + 2 \mathbb{E}[X] \mathbb{E}[Y] + \mathbb{E}[Y]^{2})$$

$$= \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2} + \mathbb{E}[Y^{2}] - \mathbb{E}[Y]^{2} + 2 \mathbb{E}[XY] - 2 \mathbb{E}[X] \mathbb{E}[Y]$$

$$= Var(X) + Var(Y) + 2 \mathbb{E}[XY] - 2 \mathbb{E}[X] \mathbb{E}[Y]$$

$$= Var(X) + Var(Y)$$
equal by independence

Example – Coin Tosses

We flip n independent coins, each one heads with probability p

- $X_i = \begin{cases} 1, & i^{\text{th}} \text{ outcome is heads} \\ 0, & i^{\text{th}} \text{ outcome is tails.} \end{cases}$
- Z = number of heads

What is $\mathbb{E}[Z]$? What is Var(Z)?

Fact.
$$Z = \sum_{i=1}^{n} X_i$$

$$P(X_i = 1) = p$$

$$P(X_i = 0) = 1 - p$$

$$P(Z = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Note: $X_1, ..., X_n$ are mutually independent! [Verify it formally!]

$$Var(Z) = \sum_{i=1}^{n} Var(X_i) = n \cdot p(1-p)$$
Note $Var(X_i) = p(1-p)$