CSE 312 Foundations of Computing II

Lecture 9: Variance and Independence of RVs (continued) Lecture 10: Bloom Filters

Announcements

- PSet 3 due today
- PSet 2 returned yesterday
- PSet 4 posted this evening
- Last PSet prior to midterm (midterm is in exactly two weeks from now)
- Midterm info will follow soon
- PSet 5 will only come after the midterm in two weeks

Recap Variance - Properties

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2} \geq 0
$$

Theorem. For any $a, b \in \mathbb{R}, \operatorname{Var}(a \cdot X+b)=a^{2} \cdot \operatorname{Var}(X)$

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Variance

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Proof: $\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] \quad$ Recall $\mathbb{E}[X]$ is a constant

$$
\begin{aligned}
& =\mathbb{E}\left[X^{2}-2 \mathbb{E}[X] \cdot X+\mathbb{E}[X]^{2}\right] \\
& =\mathbb{E}\left(X^{2}\right)-2 \mathbb{E}[X] \mathbb{E}[X]+\mathbb{E}[X]^{2} \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} \quad \quad \text { (linearity of expectation!) } \\
&
\end{aligned}
$$

Variance of Indicator Random Variables

Suppose that X_{A} is an indicator RV for event A with $P(A)=p$ so

$$
\mathbb{E}\left[X_{A}\right]=P(A)=p
$$

Since X_{A} only takes on values 0 and 1 , we always have $X_{A}^{2}=X_{A}$
so

$$
\operatorname{Var}\left(X_{A}\right)=\underline{\left.\mathbb{E}\left[X_{A}^{2}\right]\right]-\mathbb{E}\left[X_{A}\right]^{2}}=\underline{\rho} \underset{p}{\mathbb{E}\left[X_{A}\right]}-\underset{\sim}{\mathbb{E}\left[X_{A}\right]^{2}=p-p^{2}}=\underset{\sim}{p(1-p)}
$$

In General, $\operatorname{Var}(X+Y) \neq \operatorname{Var}(X)+\operatorname{Var}(Y)$

$$
\operatorname{Var}(x)=\underbrace{E\left(x^{2}\right)}_{1}-\left[\#[x]^{2}\right.
$$

$$
P(x=1)
$$

Proof by counter-example:

- Let X be a rev. with $\operatorname{pmf} P(\underline{X=1})=P(\underline{X=-1})=1 / 2$
- What is $\mathbb{E}[X]$ and $\operatorname{Var}(X)$?
- Let $Y=-X$

$$
\overline{\operatorname{ar}(Y) ?}-1 \quad Y+Y=0
$$

- What is $\widehat{\mathbb{E}}[Y]$ and $\operatorname{Var}(Y)$?

1
What is $\operatorname{Var}(X+Y)$? $\not \operatorname{VAR}(X)+\operatorname{VAR}(Y$
τ

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!

Random Variables and Independence

Definition. Two random variables X, Y are (mutually) independent if for all x, y.

$$
\Omega_{x}^{\pi \Omega_{y}} P\left(X_{A}^{x}=x, \frac{Y}{Y}=y\right)=P(X=x) \cdot P\left(\frac{Y=y}{Y}\right)
$$

Intuition: Knowing X doesn't help you guess Y and vice versa

Definition. The random variables X_{1}, \ldots, X_{n} are (mutually) independent if for all x_{1}, \ldots, x_{n},

$$
P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=P\left(X_{1}=x_{1}\right) \cdots P\left(X_{n}=x_{n}\right)
$$

Note: No need to check for all subsets, but need to check for all outcomes!

Example

Let X be the number of heads in n independent coin flips of the same coin. Let $Y=X \bmod 2$ be the parity (even/odd) of X.
Are X and Y independent?

$$
\begin{gathered}
\operatorname{Ps}[x=0] \neq 0 \\
\operatorname{Pr}\left[Y_{2} \rightarrow 1\right] \neq 0 \\
\operatorname{Pr}[x=0 \quad 4 \cdot y=1] \\
=0
\end{gathered}
$$

Poll:
pollev.com/paulbeameo28
A. Yes
B. No

Example

Make $2 n$ independent coin flips of the same coin.
Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips.
Are X and Y independent?

Poll:
pollev.com/paulbeame028
A. Yes
B. No

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!

Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Corollary. If $X_{1}, X_{2}, \ldots, X_{n}$ mutually independent,

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\frac{\sum_{i}^{n} \operatorname{Var}\left(X_{i}\right)}{n^{2}}
$$

Example - Coin Tosses

We flip n independent coins, each one heads with probability p

- $X_{i}=\left\{\begin{array}{l}1, i^{\text {th }} \text { outcome is heads } \\ 0, i^{\text {th }} \text { outcome is tails. }\end{array}\right.$ Fact. $Z=\sum_{i=1}^{n} X_{i}$
- $Z=$ number of heads

What is $\mathbb{E}[Z]$? What is $\operatorname{Var}(Z)$? n $p(1-\gamma)$

$$
P(Z=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Note: X_{1}, \ldots, X_{n} are mutually independent! [Verify it formally!]
$\longrightarrow \operatorname{Var}(Z)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) \neq n \cdot p(1-p) \quad$ Note $\operatorname{Var}\left(X_{i}\right)=p(1-p)$

(Not Covered) Proof of $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$
Proof

$$
\left.\begin{array}{l}
\text { Let } x_{i}, \mathrm{y}_{i}, i=1,2, \ldots \text { be the possible values of } X, Y . \\
\left.\begin{array}{rl}
\mathbb{E}[X \cdot Y] & =\sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P\left(X=x_{i} \wedge Y=y_{j}\right.
\end{array}\right) \\
\\
=\sum_{i} \sum_{j} x_{i} \cdot y_{i} \cdot P\left(X=x_{i}\right) \cdot P\left(Y=y_{j}\right) \\
\\
=\sum_{i} x_{i} \cdot P\left(X=x_{i}\right) \cdot\left(\sum_{j} y_{j} \cdot P\left(Y=y_{j}\right)\right) \\
\\
\end{array}\right)
$$

Note: NOT true in general; see earlier example $\mathbb{E}\left[\mathrm{X}^{2}\right] \neq \mathbb{E}[\mathrm{X}]^{2}$

(Not Covered) Proof of $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

$$
\text { Proof } \quad \begin{aligned}
& \operatorname{Var}(X+Y) \\
& =\mathbb{E}\left[(X+Y)^{2}\right]-(\mathbb{E}[X+Y])^{2} \\
& =\mathbb{E}\left[X^{2}+2 X Y+Y^{2}\right]-(\mathbb{E}[X]+\mathbb{E}[Y])^{2} \\
& =\mathbb{E}\left[X^{2}\right]+2 \mathbb{E}[X Y]+\mathbb{E}\left[Y^{2}\right]-\left(\mathbb{E}[X]^{2}+2 \mathbb{E}[X] \mathbb{E}[Y]+\mathbb{E}[Y]^{2}\right) \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}+\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}+2 \mathbb{E}[X Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \mathbb{E}[X Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)
\end{aligned}
$$

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!

Basic Problem

Problem: Store a subset S of a large set U.
Example. $U=$ set of 128 bit strings
$S=$ subset of strings of interest

$$
\begin{gathered}
|U| \approx 2^{128} \\
|S| \approx 1000
\end{gathered}
$$

Two goals:

1. Very fast (ideally constant time) answers to queries "Is $x \in S$?" for any $x \in U$.
2. Minimal storage requirements.

Naïve Solution I－Constant Time

Idea：Represent S as an array A with 2^{128} entries．$\quad \mathrm{A}[x]= \begin{cases}0 & \text { if } x \notin S\end{cases}$

Membership test：To check．$x \in S$ just check whether $\mathrm{A}[x]=1$ ．
\rightarrow constant time！目 国
Storage：Require storing 2^{128} bits，even for small S ．

Naïve Solution II - Small Storage

Idea: Represent S as a list with $|S|$ entries.
$S=\{0,2, \ldots, K\}$

...

Storage: Grows with $|S|$ only
Membership test: Check $x \in S$ requires time linear in $|S|$
(Can be made logarithmic by using a tree)

Hash Table

Idea: Map elements in S into an array A of size m using a hash function h
Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)]=x$
Storage: m elements (size of array)

Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)]=x$
Storage: m elements (size of array)

Hashing: collisions

Collisions occur when $\boldsymbol{h}(x)=\boldsymbol{h}(y)$ for some distinct $x, y \in S$, i.e., two elements of set map to the same location

- Common solution: chaining - at each location (bucket) in the table, keep linked list of all elements that hash there.

Good hash functions to keep collisions low

- The hash function \boldsymbol{h} is good iff it
- distributes elements uniformly across the m array locations so that
- pairs of elements are mapped independently
"Universal Hash Functions" - see CSE 332

Hashing: summary

Hash Tables

- They store the data itself
- With a good hash function, the data is well distributed in the table and lookup times are small.
- However, they need at least as much In some cases, $|S|$ is huge, or not known a-priori ... space as all the data being stored, i.e., $m=\Omega(|S|)$

Can we do

 better!?

Bloom Filters - Main points

- Probabilistic data structure.
- Close cousins of hash tables.
- But: Ridiculously space efficient
- Occasional errors, specifically false positives.

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:
${ }^{1} \operatorname{add}(x)-\operatorname{adds} x \in U$ to the set δ

2. contains (x) - ideally: true if $x \in S$, false otherwise

Instead, relaxed guarantees:

- False \rightarrow definitely not in S
- True \rightarrow possibly in S
[i.e. we could have false positives]

Bloom Filters - Why Accept False Positives?

- Speed - both add and contains very very fast.
- Space - requires a miniscule amount of space relative to storing all the actual items that have been added.
- Often just \& bits per inserted item!
- Fallback mechanism - can distinguish false positives from true positives with extra cost
- Ok if mostly negatives expected + low false positive rate

Bloom Filters: Application

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be spaceefficient
- Want it so that can check if a URL is in structure:
- If return False, then definitely not in the structure (don't need to do expensive database lookup, website is safe)
- If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.

Bloom Filters - More Applications

- Any scenario where space and efficiency are important.
- Used a lot in networking
- In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
- Google BigTable uses Bloom filters to reduce disk lookups
- Internet routers often use Bloom filters to track blocked IP addresses.
- And on and on...

What you can't do with Bloom filters

- There is no delete operation
- Once you have added something to a Bloom filter for S, it stays
- You can't use a Bloom filter to name any element of S

But what you can do makes them very effective!

Bloom Filters - Ingredients

Basic data structure is a $k \times m$ binary array "the Bloom filter"

- k rows t_{1}, \ldots, t_{k}, each of size m
- Think of each row as an m-bit vector
k different hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}: U \rightarrow[m]$

Bloom Filters - Three operations

- Set up Bloom filter for $S=\varnothing$

$$
\begin{aligned}
& \text { function INITIALIZE }(k, m) \\
& \quad \text { for } i=1, \ldots, k \text { do } \\
& \quad t_{i}=\text { new bit vector of } m 0 \mathrm{~s}
\end{aligned}
$$

- Update Bloom filter for $S \leftarrow S \cup\{x\}$

$$
\begin{gathered}
\text { function } \operatorname{ADD}(x) \\
\text { for } i=1, \ldots, k \text { : do } \\
t_{i}\left[h_{i}(x)\right]=1
\end{gathered}
$$

- Check if $x \in S$

Bloom Filters - Initialization

