
CSE 312

Foundations of Computing II

Lecture 9:  Variance and Independence of RVs (continued)
Lecture 10: Bloom Filters
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Announcements

• PSet 3 due today

• PSet 2 returned yesterday

• PSet 4 posted this evening

– Last PSet prior to midterm (midterm is in exactly two weeks from 
now)

– Midterm info will follow soon

– PSet 5 will only come after the midterm in two weeks  
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Recap Variance – Properties 
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Definition. The variance of a (discrete) RV � is
Var � = � � − �[�] � = ∑ � � ⋅ � − �[�] ��

Theorem. Var � = �[��] − �[�]�

Theorem. For any �, � ∈ ℝ, Var � ⋅ � + � = �� ⋅ Var �



Variance
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Theorem. Var � = �[��] − � � �

Proof: Var � = � � − �[�] �
= � �� − 2�[�] ⋅ � + �[�]�
= � �� − 2�[�]�[�] + � � �
= �[��] − � � � (linearity of expectation!)

Recall �[�] is a constant

�[��] and �[�]�
are different !



Variance of Indicator Random Variables

Suppose that �� is an indicator RV for event � with �(�) =  so

Since �� only takes on values 0 and 1, we always have ��� = ��
so
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� �� = � � = 

Var �� = � ��� − � �� � = � �� − � �� � =  − � = (1 − )



In General, Var � +  ≠ Var � + Var( )
Proof by counter-example:

• Let � be a r.v. with pmf � � = 1 = � � = −1 = 1/2
– What is �[�] and Var(�)?

• Let  = −�
– What is �[ ] and Var( )?

What is Var(� +  )?
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Agenda

• Variance

• Properties of Variance

• Independent Random Variables

• Properties of Independent Random Variables

• An Application:  Bloom Filters!
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Random Variables and Independence
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Definition. Two random variables �, Y are (mutually) independent if 
for all �, $,

� � = �,  = $ = � � = � ⋅ �( = $)

Definition. The random variables �%, … , �' are (mutually) independent if 

for all �%, … , �',

� �% = �%, … , �' = �' = � �% = �% ⋯ �(�' = �')
Note: No need to check for all subsets, but need to check for all outcomes! 

Intuition: Knowing � doesn’t help you guess  and vice versa 

Comma is shorthand for AND



Example

Let � be the number of heads in ) independent coin flips of the 
same coin. Let  = � mod 2 be the parity (even/odd) of �. 

Are � and  independent?
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Poll:
pollev.com/paulbeame028

A. Yes
B. No



Example

Make 2) independent coin flips of the same coin. 

Let � be the number of heads in the first ) flips and  be the 
number of heads in the last ) flips.

Are � and  independent?
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Poll:
pollev.com/paulbeame028

A. Yes
B. No



Agenda

• Variance

• Properties of Variance

• Independent Random Variables

• Properties of Independent Random Variables

• An Application:  Bloom Filters!
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Important Facts about Independent Random Variables
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Theorem. If �,  independent, �[� ⋅  ] = �[�] ⋅ �[ ]

Theorem. If �,  independent, Var � +  = Var � + Var  
Corollary. If �%, ��, …, �' mutually independent, 

Var - �.
'

./%
= - Var(�.)

'

.



Example – Coin  Tosses

We flip ) independent coins, each one heads with probability 
- �. = 01, 1th outcome is heads 0, 1th outcome is tails.  
- ; = number of heads

What is �[;]?    What is Var(;)?
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� �. = 1 = � �. = 0 = 1 − 

� ; = < = '= = 1 −  '>=

Fact. ; = ∑ �.'./%

Note: �%, … , �' are mutually independent! [Verify it formally!]

Var ; = - Var �.
'

./%
= ) ⋅ (1 − ) Note Var �. = (1 − )



(Not Covered) Proof of �[� ⋅  ] = �[�] ⋅ �[ ]
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Theorem. If �,  independent, �[� ⋅  ] = �[�] ⋅ �[ ]
Proof Let �. , y. , 1 = 1, 2, …be the possible values of �,  .

� � ⋅  = - - �. ⋅ $@ ⋅ �(� = �. ∧  = $@)
@.

= - - �. ⋅ $. ⋅ � � = �. ⋅ �( = $@)
@.

= - �. ⋅ � � = �. ⋅ - $@ ⋅ �( = $@)
@.

= � � ⋅ �[ ]
Note: NOT true in general; see earlier example �[X2]≠�[X]2

independence



(Not Covered) Proof of Var � +  = Var � + Var  

15

Proof

Theorem. If �,  independent, Var � +  = Var � + Var  
C�D � +  
= � � +  � − � � +  �
= � �� + 2� +  � − � � + �  �

= � �� + 2 � � + �  � − � � � + 2 � �  �  + �  �
= � �� − � � � + �  � − �  � + 2 � � − 2 � �  �  
= C�D � + C�D  + 2 � � − 2 � �  �  
= C�D(�) + C�D  equal by independence

linearity



Brain Break



Agenda

• Variance

• Properties of Variance

• Independent Random Variables

• Properties of Independent Random Variables

• An Application:  Bloom Filters!
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Basic Problem
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Problem: Store a subset E of a large set F.

Example. F = set of 128 bit stringsE = subset of strings of interest
F ≈ 2128

E ≈ 1000

Two goals: 

1. Very fast (ideally constant time) answers to queries “Is � ∈ E?” 
for any � ∈ F.

2. Minimal storage requirements.



Naïve Solution I – Constant Time
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Idea: Represent E as an array A with 2128 entries.

J K L … M …
K J K J K … J J

A � = 01   if � ∈ E0   if � ∉ E

Membership test: To check. � ∈ E just check whether A � = 1.

Storage: Require storing 2128  bits, even for small E.
��→ constant time!

��

E = {0,2, … , K}



Naïve Solution II – Small Storage
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Idea: Represent E as a list with |E| entries.

0 2 … K

Storage: Grows with |E| only ��

Membership test: Check � ∈ E requires time linear in |E|
(Can be made logarithmic by using a tree) ��

E = {0,2, … , K}



Hash Table
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Idea: Map elements in E into an array � of size T using a hash function U

hash function U: F → [T]

1
2

3
4

5

K-1
K

1

2

3

4

5

Membership test: To check � ∈ E just check whether � U(�) = �
Storage: T elements (size of array)



Hash Table
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Idea: Map elements in E into an array � of size T using a hash function U
Membership test: To check � ∈ E just check whether � U(�) = �
Storage: T elements (size of array)

Challenge 2: EnsureT = X( E )

Challenge 1: Ensure Y � ≠ Y $ for 

most �, $ ∈ E 



Hashing: collisions

Collisions occur when Y � = Y $ for some distinct �, $ ∈ E, 

i.e., two elements of set map to the same location

• Common solution: chaining – at each 

location (bucket) in the table, keep 

linked list of all elements that hash there.
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1 2 3 4 5 TT…

�%�%
�Z�Z

����
Y �% = Y �Z



Good hash functions to keep collisions low

• The hash function Y is good iff it

– distributes elements uniformly across the T array locations so that 

– pairs of elements are mapped independently

“Universal Hash Functions” – see CSE 332
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Hashing: summary

25

Hash Tables

• They store the data itself

• With a good hash function, the data 
is well distributed in the table and 
lookup times are small.

• However, they need at least as much 
space as all the data being stored, 
i.e., T = Ω( E )

Can we do 
better!?

In some cases, E is huge, 
or not known a-priori … 



Bloom Filters

to the rescue
(Named after Burton Howard Bloom)

This Photo by Unknown Author is licensed under CC BY-NC-ND



Bloom Filters – Main points

• Probabilistic data structure.

• Close cousins of hash tables.

– But: Ridiculously space efficient

• Occasional errors, specifically false positives.
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Bloom Filters

• Stores information about a set of elements E ⊆ F.

• Supports two operations:

1. add(�) - adds � ∈ F to the set E
2. contains(�) – ideally: true if � ∈ E, false otherwise
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Instead, relaxed guarantees:
• False → definitely not in E 
• True → possibly in E

[i.e. we could have false positives]



Bloom Filters – Why Accept False Positives?

• Speed – both add and contains very very fast. 

• Space – requires a miniscule amount of space relative to 
storing all the actual items that have been added.

– Often just 8 bits per inserted item!

• Fallback mechanism – can distinguish false positives from 
true positives with extra cost

– Ok if mostly negatives expected + low false positive rate
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Bloom Filters: Application

• Google Chrome has a database of malicious URLs, but it takes a long 
time to query.

• Want an in-browser structure, so needs to be efficient and be space-
efficient

• Want it so that can check if a URL is in structure:
– If return False, then definitely not in the structure (don’t need to 

do expensive database lookup, website is safe)
– If return True, the URL may or may not be in the structure. Have to 

perform expensive lookup in this rare case.
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Bloom Filters – More Applications

• Any scenario where space and efficiency are important.

• Used a lot in networking

• In distributed systems when want to check consistency of data across 
different locations, might send a Bloom filter rather than the full set 
of data being stored.

• Google BigTable uses Bloom filters to reduce disk lookups

• Internet routers often use Bloom filters to track blocked IP 
addresses.

• And on and on…
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What you can’t do with Bloom filters

• There is no delete operation

– Once you have added something to a Bloom filter for E, it stays

• You can’t use a Bloom filter to name any element of E
But what you can do makes them very effective!
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Bloom Filters – Ingredients 
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Basic data structure is a < × T binary array 
“the Bloom filter”

• < rows ^%, … , ^=, each of size T
• Think of each row as an T-bit vector

< different hash functions U%, … , U=: F → [T]



Bloom Filters – Three operations

• Set up Bloom filter for E = ∅

• Update Bloom filter for  E ← E ∪ {�}

• Check if � ∈ E
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function INITIALIZE(<, T)
for 1 = 1, … , <: do^. = new bit vector of T 0s

function ADD(�)
for 1 = 1, … , <: do^.[ℎ. � ] = 1

function CONTAINS(�)
return ^% ℎ% � == 1 ∧ ^� ℎ� � == 1 ∧ ⋯ ∧ ^= ℎ= � == 1



function INITIALIZE(<, T)
for 1 = 1, … , <: do^. = new bit vector of T 0s

Size of array 

associated to 

each hash 

function. 

Number of 

hash 

functions

for each hash 

function, initialize 

an empty bit 

vector of size T

Bloom Filters - Initialization


