
CSE 312

Foundations of Computing II

Lecture 9: Variance and Independence of RVs (continued)
Lecture 10: Bloom Filters

1

Announcements

• PSet 3 due today

• PSet 2 returned yesterday

• PSet 4 posted this evening

– Last PSet prior to midterm (midterm is in exactly two weeks from
now)

– Midterm info will follow soon

– PSet 5 will only come after the midterm in two weeks

2

Recap Variance – Properties

3

Definition. The variance of a (discrete) RV � is
Var � = � � − �[�] � = ∑ � � ⋅ � − �[�] ��

Theorem. Var � = �[��] − �[�]�

Theorem. For any �, � ∈ ℝ, Var � ⋅ � + � = �� ⋅ Var �

Variance

4

Theorem. Var � = �[��] − � � �

Proof: Var � = � � − �[�] �
= � �� − 2�[�] ⋅ � + �[�]�
= � �� − 2�[�]�[�] + � � �
= �[��] − � � � (linearity of expectation!)

Recall �[�] is a constant

�[��] and �[�]�
are different !

Variance of Indicator Random Variables

Suppose that �� is an indicator RV for event � with �(�) = so

Since �� only takes on values 0 and 1, we always have ��� = ��
so

5

� �� = � � =

Var �� = � ��� − � �� � = � �� − � �� � = − � = (1 −)

In General, Var � + ≠ Var � + Var()
Proof by counter-example:

• Let � be a r.v. with pmf � � = 1 = � � = −1 = 1/2
– What is �[�] and Var(�)?

• Let = −�
– What is �[] and Var()?

What is Var(� +)?

6

Agenda

• Variance

• Properties of Variance

• Independent Random Variables

• Properties of Independent Random Variables

• An Application: Bloom Filters!

7

Random Variables and Independence

8

Definition. Two random variables �, Y are (mutually) independent if
for all �, $,

� � = �, = $ = � � = � ⋅ �(= $)

Definition. The random variables �%, … , �' are (mutually) independent if

for all �%, … , �',

� �% = �%, … , �' = �' = � �% = �% ⋯ �(�' = �')
Note: No need to check for all subsets, but need to check for all outcomes!

Intuition: Knowing � doesn’t help you guess and vice versa

Comma is shorthand for AND

Example

Let � be the number of heads in) independent coin flips of the
same coin. Let = � mod 2 be the parity (even/odd) of �.

Are � and independent?

9

Poll:
pollev.com/paulbeame028

A. Yes
B. No

Example

Make 2) independent coin flips of the same coin.

Let � be the number of heads in the first) flips and be the
number of heads in the last) flips.

Are � and independent?

10

Poll:
pollev.com/paulbeame028

A. Yes
B. No

Agenda

• Variance

• Properties of Variance

• Independent Random Variables

• Properties of Independent Random Variables

• An Application: Bloom Filters!

11

Important Facts about Independent Random Variables

12

Theorem. If �, independent, �[� ⋅] = �[�] ⋅ �[]

Theorem. If �, independent, Var � + = Var � + Var
Corollary. If �%, ��, …, �' mutually independent,

Var - �.
'

./%
= - Var(�.)

'

.

Example – Coin Tosses

We flip) independent coins, each one heads with probability
- �. = 01, 1th outcome is heads 0, 1th outcome is tails.
- ; = number of heads

What is �[;]? What is Var(;)?

13

� �. = 1 = � �. = 0 = 1 −

� ; = < = '= = 1 − '>=

Fact. ; = ∑ �.'./%

Note: �%, … , �' are mutually independent! [Verify it formally!]

Var ; = - Var �.
'

./%
=) ⋅ (1 −) Note Var �. = (1 −)

(Not Covered) Proof of �[� ⋅] = �[�] ⋅ �[]

14

Theorem. If �, independent, �[� ⋅] = �[�] ⋅ �[]
Proof Let �. , y. , 1 = 1, 2, …be the possible values of �, .

� � ⋅ = - - �. ⋅ $@ ⋅ �(� = �. ∧ = $@)
@.

= - - �. ⋅ $. ⋅ � � = �. ⋅ �(= $@)
@.

= - �. ⋅ � � = �. ⋅ - $@ ⋅ �(= $@)
@.

= � � ⋅ �[]
Note: NOT true in general; see earlier example �[X2]≠�[X]2

independence

(Not Covered) Proof of Var � + = Var � + Var

15

Proof

Theorem. If �, independent, Var � + = Var � + Var
C�D � +
= � � + � − � � + �
= � �� + 2� + � − � � + � �

= � �� + 2 � � + � � − � � � + 2 � � � + � �
= � �� − � � � + � � − � � + 2 � � − 2 � � �
= C�D � + C�D + 2 � � − 2 � � �
= C�D(�) + C�D equal by independence

linearity

Brain Break

Agenda

• Variance

• Properties of Variance

• Independent Random Variables

• Properties of Independent Random Variables

• An Application: Bloom Filters!

17

Basic Problem

18

Problem: Store a subset E of a large set F.

Example. F = set of 128 bit stringsE = subset of strings of interest
F ≈ 2128

E ≈ 1000

Two goals:

1. Very fast (ideally constant time) answers to queries “Is � ∈ E?”
for any � ∈ F.

2. Minimal storage requirements.

Naïve Solution I – Constant Time

19

Idea: Represent E as an array A with 2128 entries.

J K L … M …
K J K J K … J J

A � = 01 if � ∈ E0 if � ∉ E

Membership test: To check. � ∈ E just check whether A � = 1.

Storage: Require storing 2128 bits, even for small E.
��→ constant time!

��

E = {0,2, … , K}

Naïve Solution II – Small Storage

20

Idea: Represent E as a list with |E| entries.

0 2 … K

Storage: Grows with |E| only ��

Membership test: Check � ∈ E requires time linear in |E|
(Can be made logarithmic by using a tree) ��

E = {0,2, … , K}

Hash Table

21

Idea: Map elements in E into an array � of size T using a hash function U

hash function U: F → [T]

1
2

3
4

5

K-1
K

1

2

3

4

5

Membership test: To check � ∈ E just check whether � U(�) = �
Storage: T elements (size of array)

Hash Table

22

Idea: Map elements in E into an array � of size T using a hash function U
Membership test: To check � ∈ E just check whether � U(�) = �
Storage: T elements (size of array)

Challenge 2: EnsureT = X(E)

Challenge 1: Ensure Y � ≠ Y $ for

most �, $ ∈ E

Hashing: collisions

Collisions occur when Y � = Y $ for some distinct �, $ ∈ E,

i.e., two elements of set map to the same location

• Common solution: chaining – at each

location (bucket) in the table, keep

linked list of all elements that hash there.

23

1 2 3 4 5 TT…

�%�%
�Z�Z

����
Y �% = Y �Z

Good hash functions to keep collisions low

• The hash function Y is good iff it

– distributes elements uniformly across the T array locations so that

– pairs of elements are mapped independently

“Universal Hash Functions” – see CSE 332

24

Hashing: summary

25

Hash Tables

• They store the data itself

• With a good hash function, the data
is well distributed in the table and
lookup times are small.

• However, they need at least as much
space as all the data being stored,
i.e., T = Ω(E)

Can we do
better!?

In some cases, E is huge,
or not known a-priori …

Bloom Filters

to the rescue
(Named after Burton Howard Bloom)

This Photo by Unknown Author is licensed under CC BY-NC-ND

Bloom Filters – Main points

• Probabilistic data structure.

• Close cousins of hash tables.

– But: Ridiculously space efficient

• Occasional errors, specifically false positives.

27

Bloom Filters

• Stores information about a set of elements E ⊆ F.

• Supports two operations:

1. add(�) - adds � ∈ F to the set E
2. contains(�) – ideally: true if � ∈ E, false otherwise

28

Instead, relaxed guarantees:
• False → definitely not in E
• True → possibly in E

[i.e. we could have false positives]

Bloom Filters – Why Accept False Positives?

• Speed – both add and contains very very fast.

• Space – requires a miniscule amount of space relative to
storing all the actual items that have been added.

– Often just 8 bits per inserted item!

• Fallback mechanism – can distinguish false positives from
true positives with extra cost

– Ok if mostly negatives expected + low false positive rate

29

Bloom Filters: Application

• Google Chrome has a database of malicious URLs, but it takes a long
time to query.

• Want an in-browser structure, so needs to be efficient and be space-
efficient

• Want it so that can check if a URL is in structure:
– If return False, then definitely not in the structure (don’t need to

do expensive database lookup, website is safe)
– If return True, the URL may or may not be in the structure. Have to

perform expensive lookup in this rare case.

30

Bloom Filters – More Applications

• Any scenario where space and efficiency are important.

• Used a lot in networking

• In distributed systems when want to check consistency of data across
different locations, might send a Bloom filter rather than the full set
of data being stored.

• Google BigTable uses Bloom filters to reduce disk lookups

• Internet routers often use Bloom filters to track blocked IP
addresses.

• And on and on…

31

What you can’t do with Bloom filters

• There is no delete operation

– Once you have added something to a Bloom filter for E, it stays

• You can’t use a Bloom filter to name any element of E
But what you can do makes them very effective!

32

Bloom Filters – Ingredients

33

Basic data structure is a < × T binary array
“the Bloom filter”

• < rows ^%, … , ^=, each of size T
• Think of each row as an T-bit vector

< different hash functions U%, … , U=: F → [T]

Bloom Filters – Three operations

• Set up Bloom filter for E = ∅

• Update Bloom filter for E ← E ∪ {�}

• Check if � ∈ E
34

function INITIALIZE(<, T)
for 1 = 1, … , <: do^. = new bit vector of T 0s

function ADD(�)
for 1 = 1, … , <: do^.[ℎ. �] = 1

function CONTAINS(�)
return ^% ℎ% � == 1 ∧ ^� ℎ� � == 1 ∧ ⋯ ∧ ^= ℎ= � == 1

function INITIALIZE(<, T)
for 1 = 1, … , <: do^. = new bit vector of T 0s

Size of array

associated to

each hash

function.

Number of

hash

functions

for each hash

function, initialize

an empty bit

vector of size T

Bloom Filters - Initialization

