CSE 312 Foundations of Computing II

Lecture 9: Variance and Independence of RVs (continued) Lecture 10: Bloom Filters

Announcements

- PSet 3 due today
- PSet 2 returned yesterday
- PSet 4 posted this evening
- Last PSet prior to midterm (midterm is in exactly two weeks from now)
- Midterm info will follow soon
- PSet 5 will only come after the midterm in two weeks

Recap Variance - Properties

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2}
$$

Theorem. For any $a, b \in \mathbb{R}, \operatorname{Var}(a \cdot X+b)=a^{2} \cdot \operatorname{Var}(X)$

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Variance

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Proof: $\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] \quad$ Recall $\mathbb{E}[X]$ is a constant

$$
\begin{aligned}
& =\mathbb{E}\left[X^{2}-2 \mathbb{E}[X] \cdot X+\mathbb{E}[X]^{2}\right] \\
& =\mathbb{E}\left(X^{2}\right)-2 \mathbb{E}[X] \mathbb{E}[X]+\mathbb{E}[X]^{2} \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} \quad \quad \text { (linearity of expectation!) } \\
&
\end{aligned}
$$

Variance of Indicator Random Variables

Suppose that X_{A} is an indicator RV for event A with $P(A)=p$ so

$$
\mathbb{E}\left[X_{A}\right]=P(A)=p
$$

Since X_{A} only takes on values 0 and 1 , we always have $X_{A}^{2}=X_{A}$ so
$\operatorname{Var}\left(X_{A}\right)=\mathbb{E}\left[X_{A}^{2}\right]-\mathbb{E}\left[X_{A}\right]^{2}=\mathbb{E}\left[X_{A}\right]-\mathbb{E}\left[X_{A}\right]^{2}=p-p^{2}=p(1-p)$

In General, $\operatorname{Var}(X+Y) \neq \operatorname{Var}(X)+\operatorname{Var}(Y)$

Proof by counter-example:

- Let X be a r.v. with pmf $P(X=1)=P(X=-1)=1 / 2$
- What is $\mathbb{E}[X]$ and $\operatorname{Var}(X)$?
- Let $Y=-X$
- What is $\mathbb{E}[Y]$ and $\operatorname{Var}(Y)$?

What is $\operatorname{Var}(X+Y)$?

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!

Random Variables and Independence

Definition. Two random variables X, Y are (mutually) independent if for all x, y,

$$
P(X=x, Y=y)=P(X=x) \cdot P(Y=y)
$$

Intuition: Knowing X doesn't help you guess Y and vice versa

Definition. The random variables X_{1}, \ldots, X_{n} are (mutually) independent if for all x_{1}, \ldots, x_{n},

$$
P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=P\left(X_{1}=x_{1}\right) \cdots P\left(X_{n}=x_{n}\right)
$$

Note: No need to check for all subsets, but need to check for all outcomes!

Example

Let X be the number of heads in n independent coin flips of the same coin. Let $Y=X \bmod 2$ be the parity (even/odd) of X.
Are X and Y independent?

Poll:
pollev.com/paulbeameo28

A. Yes
B. No

Example

Make $2 n$ independent coin flips of the same coin.
Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips.
Are X and Y independent?

Poll:
pollev.com/paulbeameo28

A. Yes
B. No

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!

Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Corollary. If $X_{1}, X_{2}, \ldots, X_{n}$ mutually independent,

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(X_{i}\right)
$$

Example - Coin Tosses

We flip n independent coins, each one heads with probability p

- $X_{i}=\left\{\begin{array}{l}1, i^{\text {th }} \text { outcome is heads } \\ 0, i^{\text {th }} \text { outcome is tails. }\end{array}\right.$

Fact. $Z=\sum_{i=1}^{n} X_{i}$

- $Z=$ number of heads

$$
\begin{aligned}
& P\left(X_{i}=1\right)=p \\
& P\left(X_{i}=0\right)=1-p
\end{aligned}
$$

What is $\mathbb{E}[Z]$? What is $\operatorname{Var}(Z)$?

$$
P(Z=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Note: X_{1}, \ldots, X_{n} are mutually independent! [Verify it formally!]
$\longmapsto \operatorname{Var}(Z)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=n \cdot p(1-p) \quad$ Note $\operatorname{Var}\left(X_{i}\right)=p(1-p)$

(Not Covered) Proof of $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$
Proof

$$
\begin{aligned}
& \text { Let } x_{i}, \mathrm{y}_{i}, i=1,2, \ldots \text { be the possible values of } X, Y . \\
& \begin{aligned}
\mathbb{E}[X \cdot Y] & =\sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P\left(X=x_{i} \wedge Y=y_{j}\right) \\
& =\sum_{i} \sum_{j} x_{i} \cdot y_{i} \cdot P\left(X=x_{i}\right) \cdot P\left(Y=y_{j}\right) \\
& =\sum_{i} x_{i} \cdot P\left(X=x_{i}\right) \cdot\left(\sum_{j} y_{j} \cdot P\left(Y=y_{j}\right)\right) \\
& =\mathbb{E}[X] \cdot \mathbb{E}[Y]
\end{aligned}
\end{aligned}
$$

Note: NOT true in general; see earlier example $\mathbb{E}\left[\mathrm{X}^{2}\right] \neq \mathbb{E}[\mathrm{X}]^{2}$

(Not Covered) Proof of $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

$$
\text { Proof } \quad \begin{aligned}
& \operatorname{Var}(X+Y) \\
&=\mathbb{E}\left[(X+Y)^{2}\right]-(\mathbb{E}[X+Y])^{2} \\
&=\mathbb{E}\left[X^{2}+2 X Y+Y^{2}\right]-(\mathbb{E}[X]+\mathbb{E}[Y])^{2} \\
&=\mathbb{E}\left[X^{2}\right]+2 \mathbb{E}[X Y]+\mathbb{E}\left[Y^{2}\right]-\left(\mathbb{E}[X]^{2}+2 \mathbb{E}[X] \mathbb{E}[Y]+\mathbb{E}[Y]^{2}\right) \\
&=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}+\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}+2 \mathbb{E}[X Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
&=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \mathbb{E}[X Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
&=\operatorname{Var}(X)+\operatorname{Var}(Y)
\end{aligned}
$$

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!

Basic Problem

Problem: Store a subset S of a large set U.
Example. $U=$ set of 128 bit strings
$S=$ subset of strings of interest

$$
\begin{gathered}
|U| \approx 2^{128} \\
|S| \approx 1000
\end{gathered}
$$

Two goals:

1. Very fast (ideally constant time) answers to queries "Is $x \in S$?" for any $x \in U$.
2. Minimal storage requirements.

Naïve Solution I - Constant Time

Idea: Represent S as an array A with 2^{128} entries. $\quad \mathrm{A}[x]= \begin{cases}1 & \text { if } x \notin S \\ 0 & \text { i } x\end{cases}$
$S=\{0,2, \ldots, K\}$

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	\ldots	K	\ldots		
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	\ldots	$\mathbf{0}$	$\mathbf{0}$

Membership test: To check. $x \in S$ just check whether $\mathrm{A}[x]=1$.
\rightarrow constant time! (\%)
Storage: Require storing 2^{128} bits, even for small S.

Naïve Solution II - Small Storage

Idea: Represent S as a list with $|S|$ entries.
$S=\{0,2, \ldots, K\}$

Storage: Grows with $|S|$ only \rightarrow (e)
Membership test: Check $x \in S$ requires time linear in $|S|$
(Can be made logarithmic by using a tree)

Hash Table

Idea: Map elements in S into an array A of size m using a hash function h
Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)]=x$
Storage: m elements (size of array)

Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)]=x$
Storage: m elements (size of array)

Hashing: collisions

Collisions occur when $\boldsymbol{h}(x)=\boldsymbol{h}(y)$ for some distinct $x, y \in S$, i.e., two elements of set map to the same location

- Common solution: chaining - at each location (bucket) in the table, keep linked list of all elements that hash there.

Good hash functions to keep collisions low

- The hash function \boldsymbol{h} is good iff it
- distributes elements uniformly across the m array locations so that
- pairs of elements are mapped independently
"Universal Hash Functions" - see CSE 332

Hashing: summary

Hash Tables

- They store the data itself
- With a good hash function, the data is well distributed in the table and lookup times are small.
- However, they need at least as much In some cases, $|S|$ is huge, or not known a-priori ... space as all the data being stored, i.e., $m=\Omega(|S|)$

Can we do better!?

Bloom Filters - Main points

- Probabilistic data structure.
- Close cousins of hash tables.
- But: Ridiculously space efficient
- Occasional errors, specifically false positives.

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:

1. $\operatorname{add}(x)-\operatorname{adds} x \in U$ to the set S
2. contains (x) - ideally: true if $x \in S$, false otherwise Instead, relaxed guarantees:

- False \rightarrow definitely not in S
- True \rightarrow possibly in S
[i.e. we could have false positives]

Bloom Filters - Why Accept False Positives?

- Speed - both add and contains very very fast.
- Space - requires a miniscule amount of space relative to storing all the actual items that have been added.
- Often just 8 bits per inserted item!
- Fallback mechanism - can distinguish false positives from true positives with extra cost
- Ok if mostly negatives expected + low false positive rate

Bloom Filters: Application

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be spaceefficient
- Want it so that can check if a URL is in structure:
- If return False, then definitely not in the structure (don't need to do expensive database lookup, website is safe)
- If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.

Bloom Filters - More Applications

- Any scenario where space and efficiency are important.
- Used a lot in networking
- In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
- Google BigTable uses Bloom filters to reduce disk lookups
- Internet routers often use Bloom filters to track blocked IP addresses.
- And on and on...

What you can't do with Bloom filters

- There is no delete operation
- Once you have added something to a Bloom filter for S, it stays
- You can't use a Bloom filter to name any element of S

But what you can do makes them very effective!

Bloom Filters - Ingredients

Basic data structure is a $k \times m$ binary array "the Bloom filter"

- k rows t_{1}, \ldots, t_{k}, each of size m
- Think of each row as an m-bit vector
k different hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}: U \rightarrow[m]$

Bloom Filters - Three operations

- Set up Bloom filter for $S=\varnothing$

$$
\begin{aligned}
& \text { function INITIALIZE }(k, m) \\
& \quad \text { for } i=1, \ldots, k \text { do } \\
& \quad t_{i}=\text { new bit vector of } m 0 \mathrm{~s}
\end{aligned}
$$

- Update Bloom filter for $S \leftarrow S \cup\{x\}$

$$
\begin{gathered}
\text { function } \operatorname{ADD}(x) \\
\text { for } i=1, \ldots, k: \mathbf{d o} \\
t_{i}\left[h_{i}(x)\right]=1 \\
\hline
\end{gathered}
$$

- Check if $x \in S$

$$
\begin{aligned}
& \text { function } \operatorname{CONTAINS}(x) \\
& \quad \text { return } t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1
\end{aligned}
$$

Bloom Filters - Initialization

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function INITIALIZE ( }k,m\mathrm{ )
    for i=1,\ldots,k: do
        ti
```

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	0	0	0
t_{2}	0	0	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Add

function $\operatorname{ADD}(x)$

$$
\begin{gathered}
\text { for } i=1, \ldots, k: \mathbf{d o} \\
t_{i}\left[h_{i}(x)\right]=1
\end{gathered} \longrightarrow \begin{gathered}
\text { for each hash } \\
\text { function } \mathbf{h}_{i}
\end{gathered}
$$

Index into i-th bit-vector, at index produced by hash function and set to 1
$\mathbf{h}_{i}(x) \rightarrow$ result of hash
function \mathbf{h}_{i} on x

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$
add("thisisavirus.com")
$h_{1}($ "thisisavirus.com") $\rightarrow 2$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	0	0	0
t_{2}	0	0	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$
add("thisisavirus.com")
h_{1} ("thisisavirus.com") $\rightarrow 2$
h_{2} ("thisisavirus.com") $\rightarrow 1$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	0	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$
add("thisisavirus.com")
h_{1} ("thisisavirus.com") $\rightarrow 2$
h_{2} ("thisisavirus.com") $\rightarrow 1$
h_{3} ("thisisavirus.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$
add("thisisavirus.com")
h_{1} ("thisisavirus.com") $\rightarrow 2$
h_{2} ("thisisavirus.com") $\rightarrow 1$
h_{3} ("thisisavirus.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: Contains

function CONTAINS (x) return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$

Returns True if the bit vector t_{i} for each hash function has bit 1 at index determined by $h_{i}(x)$,
Returns False otherwise

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function CONTAINS \((x)\)
return \(t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1\)
```

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

$$
\begin{array}{cc}
\begin{array}{c}
\text { function CONTAINS }(x) \\
\text { return } t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1
\end{array} & \begin{array}{c}
\text { contains("thisisavirus.com") } \\
\text { True }
\end{array} \\
h_{1}(\text { ("thisisavirus.com") } \rightarrow 2
\end{array}
$$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{coNTAINS}(x)$ return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$	contains("thisisavirus.com")
True \quad True	h_{1} ("thisisavirus.com") $\rightarrow 2$
	h_{2} ("thisisavirus.com") $\rightarrow 1$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

$\begin{aligned} & \text { function } \operatorname{CONTAINS}(x) \\ & \quad \text { return } t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1 \end{aligned}$			contains("thisisavirus.com")				
True	True	True		$\begin{aligned} h_{1}(\text { "thisisavirus.com") } & \rightarrow 2 \\ h_{2}(\text { "thisisavirus.com") } & \rightarrow 1 \\ h_{3}(\text { "thisisavirus.com") } & \rightarrow 4 \end{aligned}$			
		Index \longrightarrow	0	1	2	3	4
		t_{1}	0	0	1	0	0
		t_{2}	0	1	0	0	0
		t_{3}	0	0	0	0	1

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

$\begin{aligned} & \text { function } \operatorname{CoNTANS}(x) \\ & \text { return } t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \end{aligned}$	$t_{k}\left[l_{k}(x)\right]$		s("th			
True True	True		$\begin{aligned} & h_{1}(\text { (thisisavirus.com") } \rightarrow 2 \\ & h_{2}(\text { "thisisavirus.com") } \rightarrow 1 \\ & h_{3}(\text { (thisisavirus.com") } \rightarrow 4 \end{aligned}$			
	Index	0	1	2	3	4
Since all conditions satisfied, returns True (correctly) $l_{\text {l }}$						
	t_{2}	0	1	0	0	0
	t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
add("totallynotsuspicious.com")
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$
add("totallvnotsuspicious.com")
h_{1} ("totallynotsuspicious.com") $\rightarrow 1$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$
add("totallvnotsuspicious.com")
h_{1} ("totallynotsuspicious.com") $\rightarrow 1$
h_{2} ("totallynotsuspicious.com") $\rightarrow 0$

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$
add("totallvnotsuspicious.com")
h_{1} ("totallynotsuspicious.com") $\rightarrow 1$
h_{2} ("totallynotsuspicious.com") $\rightarrow 0$
h_{3} ("totallynotsuspicious.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	1	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$
add("totallvnotsuspicious.com")
h_{1} ("totallynotsuspicious.com") $\rightarrow 1$
h_{2} ("totallynotsuspicious.com") $\rightarrow 0$
h_{3} ("totallynotsuspicious.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	1	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function CONTAINS(x)
return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
```

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	1	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

$$
\begin{array}{cc}
\hline \begin{array}{c}
\text { function } \operatorname{conTAINS}(x) \\
\text { return } t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1
\end{array} & \begin{array}{c}
\text { contains("verynormalsite.com") } \\
\hline \text { True }
\end{array} \\
h_{1}(\text { "verynormalsite.com") } \rightarrow 2
\end{array}
$$

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	1	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{conTAINS}(x)$ return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$	contains("verynormalsite.com")
True \quad True	h_{1} ("verynormalsite.com") $\rightarrow 2$
	h_{2} ("verynormalsite.com") $\rightarrow 0$

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	1	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

$\begin{aligned} & \text { function } \operatorname{CONTANS}(x) \\ & \text { return } t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \end{aligned}$	$t_{k}\left[l_{k}(x)\right]$					
True True	True		h_{1} ("verynormalsite.com") $\rightarrow 2$ h_{2} ("verynormalsite.com") $\rightarrow 0$ h_{3} ("verynormalsite.com") $\rightarrow 4$			
	Index	0	1	2	3	4
Since all conditions satisfied, returns True (incorrectly)						
	t_{2}	1	1	0	0	0
	t_{3}	0	0	0	0	1

Brain Break

Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that contains (x) returns true if $\operatorname{add}(x)$ was never executed before?

Probability over what?! Over the choice of the $\boldsymbol{h}_{1}, \ldots, \boldsymbol{h}_{k}$
Assumptions for the analysis (somewhat stronger than for ordinary hashing):

- Each $\mathbf{h}_{i}(x)$ is uniformly distributed in $[m]$ for all x and i
- Hash function outputs for each \mathbf{h}_{i} are mutually independent (not just in pairs)
- Different hash functions are independent of each other

False positive probability - Events

Assume we perform $\operatorname{add}\left(x_{1}\right), \ldots, \operatorname{add}\left(x_{n}\right)$

$$
+\operatorname{contains}(x) \text { for } x \notin\left\{x_{1}, \ldots, x_{n}\right\}
$$

Event E_{i} holds iff $\mathbf{h}_{i}(x) \in\left\{\mathbf{h}_{i}\left(x_{1}\right), \ldots, \mathbf{h}_{i}\left(x_{n}\right)\right\}$

$$
\begin{gathered}
P(\text { false positive })=P\left(E_{1} \cap E_{2} \cap \cdots \cap E_{k}\right)=\prod_{i=1}^{k} P\left(E_{i}\right) \\
\mathbf{h}_{1}, \ldots, \mathbf{h}_{k} \text { independent }
\end{gathered}
$$

False positive probability - Events
Event E_{i} holds iff $\mathbf{h}_{i}(x) \in\left\{\mathbf{h}_{i}\left(x_{1}\right), \ldots, \mathbf{h}_{i}\left(x_{n}\right)\right\}$
Event E_{i}^{c} holds iff $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)$ and \ldots and $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)$

$$
P\left(E_{i}^{c}\right)=\sum_{z=1}^{m} P\left(\mathbf{h}_{i}(x)=z\right) \cdot P\left(E_{i}^{c} \mid \mathbf{h}_{i}(x)=\mathrm{z}\right)
$$

False positive probability - Events

Event E_{i}^{c} holds iff $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)$ and \ldots and $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)$

$$
P\left(E_{i}^{c} \mid \mathbf{h}_{i}(x)=z\right)=P\left(\mathbf{h}_{i}\left(x_{1}\right) \neq z, \ldots, \mathbf{h}_{i}\left(x_{n}\right) \neq z \mid \mathbf{h}_{i}(x)=z\right)
$$

Independence of values
of \boldsymbol{h}_{i} on different inputs $\longrightarrow P\left(\mathbf{h}_{i}\left(x_{1}\right) \neq z, \ldots, \mathbf{h}_{i}\left(x_{n}\right) \neq z\right)$

Outputs of \boldsymbol{h}_{i} uniformly spread
$\xrightarrow{\text { OL }} P\left(E_{i}^{c}\right)=\prod_{j=1}^{n} P\left(1-\frac{1}{m}\right)=\left(1-\frac{1}{m}\right)^{n}$
$\square(x)=z) \cdot P\left(E_{i}^{c} \mid \mathbf{h}_{i}(x)=\mathrm{z}\right)=\left(1-\frac{1}{m}\right)^{n}$

False positive probability - Events
Event E_{i} holds iff $\mathbf{h}_{i}(x) \in\left\{\mathbf{h}_{i}\left(x_{1}\right), \ldots, \mathbf{h}_{i}\left(x_{n}\right)\right\}$
Event E_{i}^{c} holds iff $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)$ and \ldots and $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)$

$$
P\left(E_{i}^{c}\right)=\left(1-\frac{1}{m}\right)^{n}
$$

$$
\longmapsto \mathrm{FPR}=\prod_{i=1}^{k}\left(1-P\left(E_{i}^{c}\right)\right)=\left(1-\left(1-\frac{1}{m}\right)^{n}\right)^{k}
$$

False Positivity Rate_- Example

$$
\mathrm{FPR}=\left(1-\left(1-\frac{1}{m}\right)^{n}\right)^{k}
$$

$$
\begin{aligned}
& \text { e.g., } n=5,000,000 \\
& \quad k=30 \\
& m=2,500,000
\end{aligned}
$$

$F P R=1.28 \%$

Comparison with Hash Tables - Space

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with $k=30$ and $m=2,500,000$

Hash Table
(optimistic)
$5,000,000 \times 40 B=200 \mathrm{MB}$

Bloom Filter

$2,500,000 \times 30=75,000,000$ bits $<10 \mathrm{MB}$

Time

- Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1 ms for lookup in Bloom filter.
- Suppose the false positive rate is 3%
0.5 seconds DB lookup
false positives

Bloom filter lookup

Bloom Filters typical of....

... randomized algorithms and randomized data structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!

