CSE 312

Foundations of Computing II

Lecture 9: Variance and Independence of RVs (continued)

Lecture 10: Bloom Filters

Announcements

- PSet 3 due today
- PSet 2 returned yesterday
- PSet 4 posted this evening
 - <u>Last PSet prior to midterm (midterm is in exactly two weeks from now)</u>
 - Midterm info will follow soon
 - PSet 5 will only come <u>after</u> the midterm in two weeks

Recap Variance – Properties

Definition. The **variance** of a (discrete) RV *X* is

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_{x} p_X(x) \cdot (x - \mathbb{E}[X])^2$$

Theorem. For any
$$a, b \in \mathbb{R}$$
, $Var(a \cdot X + b) = a^2 \cdot Var(X)$

Theorem.
$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Variance

Theorem. $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Proof: Var(X) =
$$\mathbb{E}[(X - \mathbb{E}[X])^2]$$
 Recall $\mathbb{E}[X]$ is a constant
= $\mathbb{E}[X^2 - 2\mathbb{E}[X] \cdot X + \mathbb{E}[X]^2]$
= $\mathbb{E}(X^2) - 2\mathbb{E}[X]\mathbb{E}[X] + \mathbb{E}[X]^2$ (linearity of expectation!)
= $\mathbb{E}[X^2] - \mathbb{E}[X]^2$ are different!

Variance of Indicator Random Variables

Suppose that X_A is an indicator RV for event A with P(A) = p so

$$\mathbb{E}[X_A] = P(A) = p$$

Since X_A only takes on values 0 and 1, we always have $X_A^2 = X_A$ so

$$Var(X_A) = \mathbb{E}[X_A^2] - \mathbb{E}[X_A]^2 = \mathbb{E}[X_A] - \mathbb{E}[X_A]^2 = p - p^2 = p(1-p)$$

In General,
$$Var(X + Y) \neq Var(X) + Var(Y)$$

Proof by counter-example:

- Let X be a r.v. with pmf P(X = 1) = P(X = -1) = 1/2– What is $\mathbb{E}[X]$ and Var(X)?
- Let Y = -X
 - What is $\mathbb{E}[Y]$ and Var(Y)?

What is Var(X + Y)?

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!

Random Variables and Independence

Comma is shorthand for AND

Definition. Two random variables X, Y are (mutually) independent if for all x, y,

$$P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$$

Intuition: Knowing *X* doesn't help you guess *Y* and vice versa

Definition. The random variables $X_1, ..., X_n$ are (mutually) independent if for all $x_1, ..., x_n$,

$$P(X_1 = x_1, ..., X_n = x_n) = P(X_1 = x_1) \cdots P(X_n = x_n)$$

Note: No need to check for all subsets, but need to check for all outcomes!

Example

Let X be the number of heads in n independent coin flips of the same coin. Let $Y = X \mod 2$ be the parity (even/odd) of X. Are X and Y independent?

Poll: pollev.com/paulbeameo28

A. Yes

B. No

Example

Make 2n independent coin flips of the same coin.

Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips.

Are *X* and *Y* independent?

Poll: pollev.com/paulbeameo28

A. Yes

B. No

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!

Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, Var(X + Y) = Var(X) + Var(Y)

Corollary. If $X_1, X_2, ..., X_n$ mutually independent,

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var}(X_i)$$

Example – Coin Tosses

We flip n independent coins, each one heads with probability p

- $X_i = \begin{cases} 1, & i^{\text{th}} \text{ outcome is heads} \\ 0, & i^{\text{th}} \text{ outcome is tails.} \end{cases}$
- Z = number of heads

What is $\mathbb{E}[Z]$? What is Var(Z)?

Fact.
$$Z = \sum_{i=1}^{n} X_i$$

$$P(X_i = 1) = p$$

$$P(X_i = 0) = 1 - p$$

$$P(Z = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Note: $X_1, ..., X_n$ are mutually independent! [Verify it formally!]

$$Var(Z) = \sum_{i=1}^{n} Var(X_i) = n \cdot p(1-p)$$
Note $Var(X_i) = p(1-p)$

(Not Covered) Proof of $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Proof

Let x_i , y_i , i = 1, 2, ...be the possible values of X, Y.

$$\mathbb{E}[X \cdot Y] = \sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P(X = x_{i} \land Y = y_{j})$$
independence
$$= \sum_{i} \sum_{j} x_{i} \cdot y_{i} \cdot P(X = x_{i}) \cdot P(Y = y_{j})$$

$$= \sum_{i} x_{i} \cdot P(X = x_{i}) \cdot \left(\sum_{j} y_{j} \cdot P(Y = y_{j})\right)$$

$$= \mathbb{E}[X] \cdot \mathbb{E}[Y]$$

Note: NOT true in general; see earlier example $\mathbb{E}[X^2] \neq \mathbb{E}[X]^2$

(Not Covered) Proof of Var(X + Y) = Var(X) + Var(Y)

Theorem. If X, Y independent, Var(X + Y) = Var(X) + Var(Y)

Proof
$$Var(X + Y)$$

$$= \mathbb{E}[(X + Y)^2] - (\mathbb{E}[X + Y])^2$$
 linearity
$$= \mathbb{E}[X^2 + 2XY + Y^2] - (\mathbb{E}[X] + \mathbb{E}[Y])^2$$

$$= \mathbb{E}[X^2] + 2 \mathbb{E}[XY] + \mathbb{E}[Y^2] - (\mathbb{E}[X]^2 + 2 \mathbb{E}[X] \mathbb{E}[Y] + \mathbb{E}[Y]^2)$$

$$= \mathbb{E}[X^2] - \mathbb{E}[X]^2 + \mathbb{E}[Y^2] - \mathbb{E}[Y]^2 + 2 \mathbb{E}[XY] - 2 \mathbb{E}[X] \mathbb{E}[Y]$$

$$= Var(X) + Var(Y) + 2 \mathbb{E}[XY] - 2 \mathbb{E}[X] \mathbb{E}[Y]$$

$$= Var(X) + Var(Y)$$
equal by independence

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!

Basic Problem

Problem: Store a subset *S* of a <u>large</u> set *U*.

```
Example. U = \text{set of } 128 \text{ bit strings} |U| \approx 2^{128} |S| \approx 1000
```

Two goals:

- 1. Very fast (ideally constant time) answers to queries "Is $x \in S$?" for any $x \in U$.
- 2. Minimal storage requirements.

Naïve Solution I - Constant Time

Idea: Represent S as an array A with 2128 entries.

$$A[x] = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S \end{cases}$$

$$S = \{0, 2, \dots, K\}$$

0	1	2		K		
1	0	1	0	1	 0	0

Membership test: To check, $x \in S$ just check whether A[x] = 1.

→ constant time!

Storage: Require storing 2¹²⁸ bits, even for small *S*.

Naïve Solution II – Small Storage

Idea: Represent *S* as a list with |*S*| entries.

$$S = \{0,2,\ldots,K\}$$

Storage: Grows with |S| only

Membership test: Check $x \in S$ requires time linear in |S|

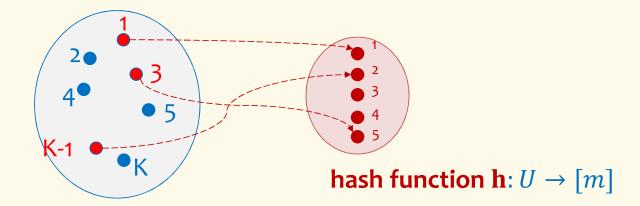
(Can be made logarithmic by using a tree)

Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)] = x$

Storage: *m* elements (size of array)

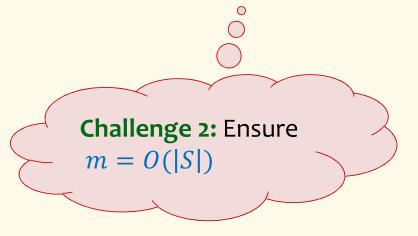


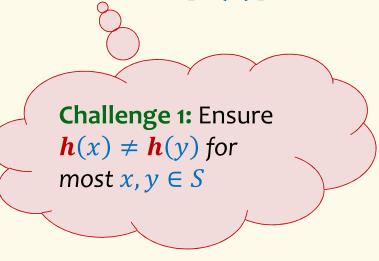
Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)] = x$

Storage: *m* elements (size of array)

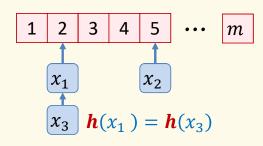




Hashing: collisions

Collisions occur when h(x) = h(y) for some distinct $x, y \in S$, i.e., two elements of set map to the same location

 Common solution: <u>chaining</u> – at each location (bucket) in the table, keep linked list of all elements that hash there.



Good hash functions to keep collisions low

- The hash function h is good iff it
 - distributes elements uniformly across the m array locations so that
 - pairs of elements are mapped independently

"Universal Hash Functions" – see CSE 332

Hashing: summary

Hash Tables

- They store the data itself
- With a good hash function, the data is well distributed in the table and lookup times are small.
- However, they need at least as much space as all the data being stored, i.e., $m = \Omega(|S|)$

In some cases, |S| is huge, or not known a-priori ...

Can we do better!?

Bloom Filters – Main points

- Probabilistic data structure.
- Close cousins of hash tables.
 - But: <u>Ridiculously</u> space efficient
- · Occasional errors, specifically false positives.

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:
 - 1. add(x) adds $x \in U$ to the set S
 - 2. **contains**(x) ideally: true if $x \in S$, false otherwise

Instead, relaxed guarantees:

- False → definitely not in S
 True → possibly in S

 [i.e. we could have false positives]

Bloom Filters – Why Accept False Positives?

- Speed both add and contains very very fast.
- Space requires a miniscule amount of space relative to storing all the actual items that have been added.
 - Often just 8 bits per inserted item!
- Fallback mechanism can distinguish false positives from true positives with extra cost
 - Ok if mostly negatives expected + low false positive rate

Bloom Filters: Application

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be spaceefficient
- Want it so that can check if a URL is in structure:
 - If return False, then definitely not in the structure (don't need to do expensive database lookup, website is safe)
 - If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.

Bloom Filters – More Applications

- Any scenario where space and efficiency are important.
- Used a lot in networking
- In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
- Google BigTable uses Bloom filters to reduce disk lookups
- Internet routers often use Bloom filters to track blocked IP addresses.
- And on and on...

What you can't do with Bloom filters

- There is no delete operation
 - Once you have added something to a Bloom filter for S, it stays
- You can't use a Bloom filter to name any element of S

But what you can do makes them very effective!

Bloom Filters – Ingredients

Basic data structure is a $k \times m$ binary array "the Bloom filter"

- k rows $t_1, ..., t_k$, each of size m
- Think of each row as an m-bit vector

k different hash functions $\mathbf{h}_1, \dots, \mathbf{h}_k : U \to [m]$

Bloom Filters – Three operations

• Set up Bloom filter for $S = \emptyset$

function INITIALIZE(k, m)for i = 1, ..., k: do $t_i = \text{new bit vector of } m \text{ 0s}$

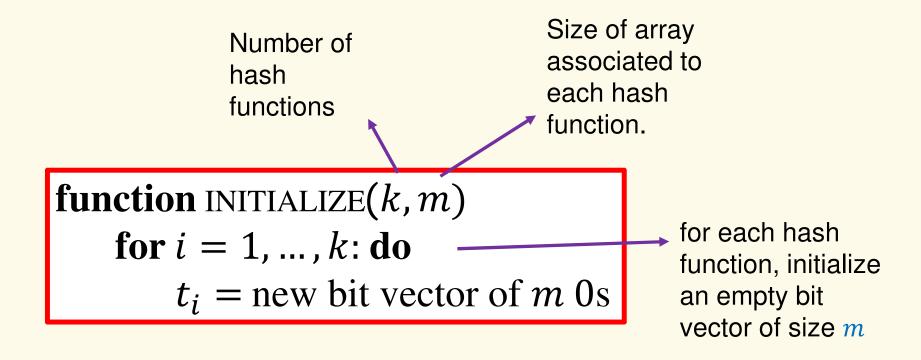
• Update Bloom filter for $S \leftarrow S \cup \{x\}$

function ADD(x) for i = 1, ..., k: do $t_i[h_i(x)] = 1$

• Check if $x \in S$

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

Bloom Filters - Initialization



Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

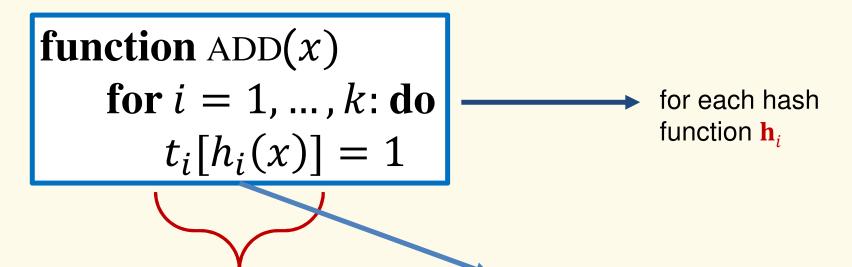
function INITIALIZE(k, m)

for i = 1, ..., k: **do**

 $t_i = \text{new bit vector of } m \text{ 0s}$

Index →	0	1	2	3	4
t ₁	0	0	0	0	0
t_2	0	0	0	0	0
t_3	0	0	0	0	0

Bloom Filters: Add



Index into *i*-th bit-vector, at index produced by hash function and set to 1

 $\mathbf{h}_{i}(x) \rightarrow \text{result of hash}$ function \mathbf{h}_{i} on x

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

Index →	0	1	2	3	4
t ₁	0	0	0	0	0
t ₂	0	0	0	0	0
t ₃	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") \rightarrow 2

 h_2 ("thisisavirus.com") \rightarrow 1

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	0	0	0	0
t ₃	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") \rightarrow 1

 h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") \rightarrow 1

 h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom Filters: Contains

function CONTAINS(x)
return
$$t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$$

Returns True if the bit vector t_i for each hash function has bit 1 at index determined by $h_i(x)$,

Returns False otherwise

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ contains("thisisavirus.com")

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True

contains("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x)

return
$$t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$$

True

True

contains("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") \rightarrow 1

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True

True

True

contains("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") \rightarrow 1

 h_3 ("thisisavirus.com") \rightarrow 4

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots$	$\wedge t$, $[h, (\gamma)] = -$	- 1	cont	ains("this	isavirus.c	om")	
True True	Tru		$h_2("$	thisisavirı thisisavirı <mark>thisisavirı</mark>	us.com")	→ 1	
	Index		0	1	2	3	4
Since all conditions satisfied,	returns Tr	ue (corre	ctly)			
	^L 1		U	U	ı	U	- 0
	t ₂		0	1	0	0	0
	t ₃		0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

add("totallynotsuspicious.com")

function ADD(x) for i = 1, ..., k: do $t_i[h_i(x)] = 1$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

 h_3 ("totallynotsuspicious.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

 h_3 ("totallynotsuspicious.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ contains("verynormalsite.com")

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True

contains("verynormalsite.com")

 h_1 ("verynormalsite.com") $\rightarrow 2$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True

True

contains("verynormalsite.com")

 h_1 ("verynormalsite.com") \rightarrow 2 h_2 ("verynormalsite.com") \rightarrow 0

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True

True

True

contains("verynormalsite.com")

 h_1 ("verynormalsite.com") $\rightarrow 2$

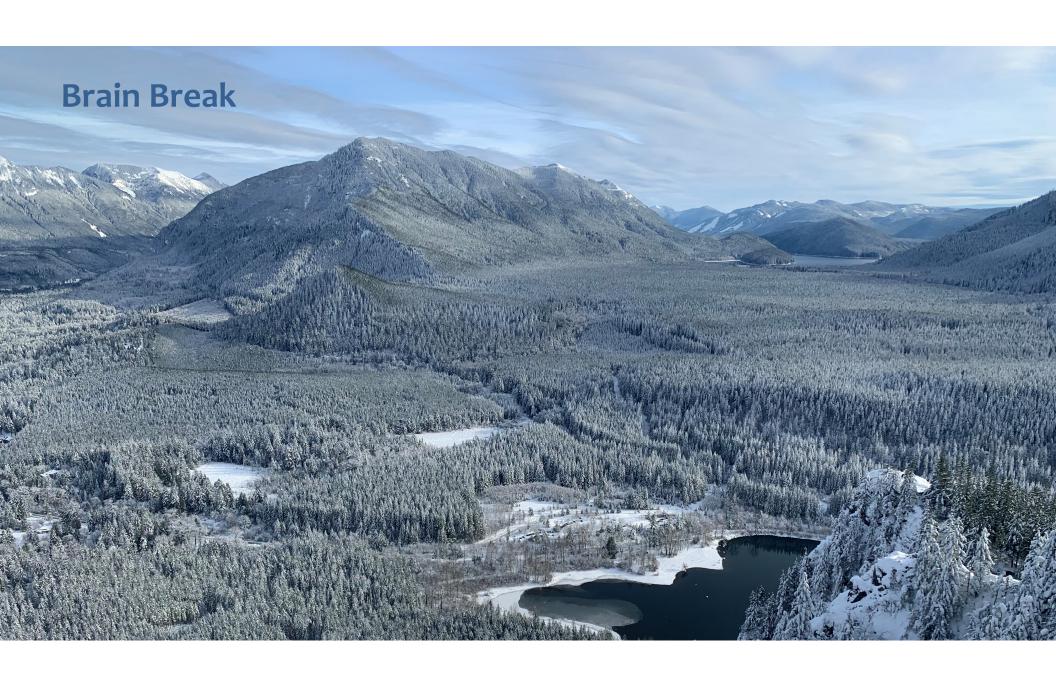
 h_2 ("verynormalsite.com") $\rightarrow 0$

 h_3 ("verynormalsite.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots$	$\wedge t$. $[h, (\gamma)] = -$	- 1	cont	ains("very	/normalsi	te.com")	
True True	Tri		$h_2("$	verynorm verynorm verynorm	alsite.cor	n") → 0	
	Index		0	1	2	3	4
Since all conditions satisfied, returns True (incorrectly)							
	^L 1		U	ı	ı	U	0
	t ₂		1	1	0	0	0
	t ₃		0	0	0	0	1



Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that contains(x) returns true if add(x) was never executed before?

Probability over what?! Over the choice of the $h_1, ..., h_k$

Assumptions for the analysis (somewhat stronger than for ordinary hashing):

- Each $\mathbf{h}_i(x)$ is uniformly distributed in [m] for all x and i
- Hash function outputs for each \mathbf{h}_i are mutually independent (not just in pairs)
- Different hash functions are independent of each other

```
Assume we perform add(x_1), ..., add(x_n)
+ contains(x) for x \notin \{x_1, ..., x_n\}
Event E_i holds iff \mathbf{h}_i(x) \in \{\mathbf{h}_i(x_1), ..., \mathbf{h}_i(x_n)\}
```

$$P(\text{false positive}) = P(E_1 \cap E_2 \cap \dots \cap E_k) = \prod_{i=1}^k P(E_i)$$

$$\mathbf{h}_1, \dots, \mathbf{h}_k \text{ independent}$$

Event E_i holds iff $\mathbf{h}_i(x) \in \{\mathbf{h}_i(x_1), ..., \mathbf{h}_i(x_n)\}$

Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

$$P(E_i^c) = \sum_{z=1}^m P(\mathbf{h}_i(x) = z) \cdot P(E_i^c \mid \mathbf{h}_i(x) = z)$$
LTP

Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

$$P(E_i^c | \mathbf{h}_i(x) = z) = P(\mathbf{h}_i(x_1) \neq z, \dots, \mathbf{h}_i(x_n) \neq z | \mathbf{h}_i(x) = z)$$

Independence of values of h_i on different inputs

$$= P(\mathbf{h}_i(x_1) \neq z, \dots, \mathbf{h}_i(x_n) \neq z)$$

$$= \prod_{j=1}^{n} P(\mathbf{h}_{i}(x_{j}) \neq z)$$

Outputs of h_i uniformly spread

$$= \prod_{j=1}^{n} \left(1 - \frac{1}{m} \right) = \left(1 - \frac{1}{m} \right)^n$$

$$P(E_i^c) = \sum_{z=1}^m P(\mathbf{h}_i(x) = z) \cdot P(E_i^c | \mathbf{h}_i(x) = z) = \left(1 - \frac{1}{m}\right)^n$$

Event E_i holds iff $\mathbf{h}_i(x) \in \{\mathbf{h}_i(x_1), ..., \mathbf{h}_i(x_n)\}$

Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

$$P(E_i^c) = \left(1 - \frac{1}{m}\right)^n$$

$$FPR = \prod_{i=1}^{k} \left(1 - P(E_i^c)\right) = \left(1 - \left(1 - \frac{1}{m}\right)^n\right)^k$$

False Positivity Rate_- Example

$$FPR = \left(1 - \left(1 - \frac{1}{m}\right)^n\right)^k$$

e.g.,
$$n = 5,000,000$$

 $k = 30$
 $m = 2,500,000$

FPR = 1.28%

Comparison with Hash Tables - Space

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with k = 30 and m = 2,500,000

Hash Table

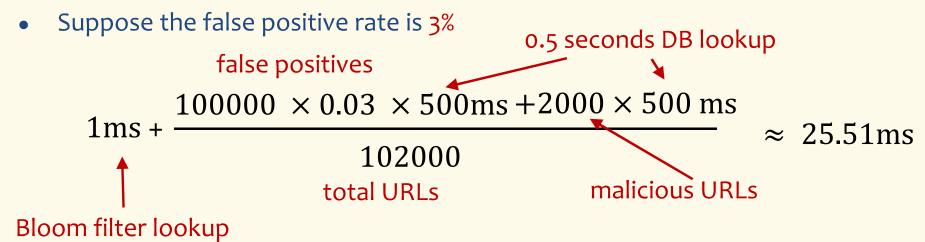
(optimistic) $5,000,000 \times 40B = 200MB$

Bloom Filter

 $2,500,000 \times 30 = 75,000,000 \text{ bits}$

Time

- Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.



Bloom Filters typical of....

... randomized algorithms and randomized data structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!