CSE 312

 Foundations of Computing II

 Foundations of Computing II}

Lecture 12: Zoo of Discrete RVS part II Poisson Distribution

Announcements

- Midterm info is posted Mov t
- Q\&A session next Juesday 4pm on Zoom
- Practice midterm + other practice materials posted this Wednesday

\[

\]

Agenda

- Zoo of Discrete RVs
- Uniform Random Variables, Part I
- Bernoulli Random Variables, Part I
- Binomial Random Variables, Part I
- Geometric Random Variables
- Negative Binomial Random Variables
- Hypergeometric Random Variables
- Poisson Distribution
- Approximate Binomial distribution using Poisson distribution
- Applications

Geometric Random Variables

unt?
A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ befere seing the first success. (iucludbs reccell bical) X is called a Geometric random variable with parameter p.

Notation: $X \sim \operatorname{Geo}(p)$
PMF:

Examples:

- \# of coin flips until first head
- \# of random guesses on MC questions until you get one right
- \# of random guesses at a password until you hit it

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the first success.
X is called a Geometric random variable with parameter p.

Notation: $X \sim \operatorname{Geo}(p)$
PMF: $P(X=k)=(1-p)^{k-1} p$
Expectation: $\mathbb{E}[X]=\frac{1}{p}$
Variance: $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$

Examples:

- \# of coin flips until first head
- \# of random guesses on MC questions until you get one right
- \# of random guesses at a password until you hit it

Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You have been practicing, so you have a probability of 0.999 of getting each note correct (independent of the others). If you mess up a single note in the song, you must start over and play from the beginning. Let X be the number of times you have to play the song from the start. What is $\mathbb{E}[X]$?

Agenda

- Zoo of Discrete RVs
- Uniform Random Variables, Part I
- Bernoulli Random Variables, Part I
- Binomial Random Variables, Part I
- Geometric Random Variables
- Negative Binomial Random Variables
- Hypergeometric Random Variables
- Poisson Distribution
- Approximate Binomial distribution using Poisson distribution
- Applications

Negative Binomial Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the $r^{\text {th }}$ success.
Equivalently, $X=\sum_{i=1}^{r} Z_{i}$ where $Z_{i} \sim \operatorname{Geo}(p)$.
X is called a Negative Binomial random variable with parameters r, p.
Notation: $X \sim \operatorname{NegBin}(r, p)$
PMF: $P(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}$
Expectation: $\mathbb{E}[X]=\frac{r}{p}$
predicy cucce/sy
Variance: $\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}$

Hypergeometric Random Variables

A discrete random variable X that models the number of successes in n draws (without replacement) from N items that contain K successes in total. X is called a Hypergeometric $R V$ with parameters $\widehat{N, K, n}$.

Notation: $X \sim \operatorname{HypGeo}(N, K, n)$
PMF: $P(X=k)=\frac{\binom{K}{k}\binom{N-K}{-k}}{\binom{N}{n}}$

Expectation: $\mathbb{E}[X]=n \frac{K}{N}$
Variance: $\operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)}$

$X \sim \operatorname{Unif}(a, b)$	$X \sim \operatorname{Ber}(p)$	$X \sim \operatorname{Bin}(n, p)$
$P(X=k)=\frac{1}{b-a+1}$	$P(X=1)=p, P(X=0)=1-p$	$P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
$\mathbb{E}[X]=\frac{a+b}{2}$	$\mathbb{E}[X]=p$	$\mathbb{E}[X]=n p$
$\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}$	$\operatorname{Var}(X)=p(1-p)$	$\operatorname{Var}(X)=n p(1-p)$
$X \sim \operatorname{Geo}(p)$	$P(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}$	$P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$
$P(X=k)=(1-p)^{k-1} p$	$\mathbb{E}[X]=\frac{r}{p}$	$\mathbb{E}[X]=n \frac{K}{N}$
$\mathbb{E}[X]=\frac{1}{p}$	$\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}$	$\operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)}$
$\operatorname{Var}(X)=\frac{1-p}{p^{2}}$		

Agenda

- Zoo of Discrete RVs
- Uniform Random Variables, Part I
- Bernoulli Random Variables, Part I
- Binomial Random Variables, Part I
- Geometric Random Variables
- Negative Binomial Random Variables
- Hypergeometric Random Variables
- Poisson Distribution
- Approximate Binomial distribution using Poisson distribution
- Applications

Preview: Poisson

Model: \# events that occur in an hour

- Expect to see 3 events per hour (but will be random)
- The expected number of events in t hours, is $3 t$
- Occurrence of events on disjoint time intervals is independent

Example - Modelling car arrivals at an intersection
$X=\#$ of cars passing through a light in 1 hour

Example - Model the process of cars passing through a light in 1 hour
$X=\#$ cars passing through a light in 1 hour. $\mathbb{E}[X]=3$
Assume: Occurrence of events on disjoint time intervals is independent

Approximation idea: Divide hour into n intervals of length $1 / n$

This gives us n independent intervals
Assume at most one car per interval
$p=$ probability car arrives in an interval

$$
\operatorname{Bin}(n, p)
$$

What should p be? pollev.com/paulbeame028
A. $3 / n$
B. $3 n$
C. 3
D. $3 / 60$

Example - Model the process of cars passing through a light in 1 hour

 $X=\#$ cars passing through a light in 1 hour. Disjoint time intervals are independent. Know: $\mathbb{E}[X]=\lambda$ for some given $\lambda>0$

Discrete version: n intervals, each of length $1 / n$.
In each interval, there is a car with probability $p=\lambda / n$ (assume ≤ 1 car can pass by)
Each interval is Bernoulli: $X_{i}=1$ if car in $i^{\text {th }}$ interval (0 otherwise). $P\left(X_{i}=1\right)=\lambda / n$
$X=\sum_{i=1}^{n} X_{i} \quad X \sim \operatorname{Bin}(n, p)$

$$
P(X=i)=\binom{n}{i}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i}
$$

$$
\text { indeed! } \mathbb{E}[X]=p_{1} n=(\lambda 1-p)^{n-i}
$$

Don't like discretization

X is binomial $P(X=i)=\binom{n}{i}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i}$

We want now $n \rightarrow \infty$

$$
\hat{i}^{n} \frac{(n \cdot 1)-(n-i+1)}{n^{i}} \rightarrow e^{-\lambda}
$$

$$
\begin{aligned}
& P(X=i)=\binom{n}{i}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i}=\underbrace{\left.\frac{n!}{(n-i)}\right) n^{n} \frac{\lambda^{i}}{i!}\left(1-\frac{\lambda}{n}\right)^{n}}_{\rightarrow 1} \underbrace{\left(1-\frac{\lambda}{n}\right)^{-i}}_{\rightarrow e^{-\lambda}} n \rightarrow \infty \\
& \rightarrow P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
\end{aligned}
$$

Poisson Distribution

- Suppose "events" happen, independently, at an average rate of λ per unit time.
- Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter λ (denoted $X \sim \operatorname{Poi}(\lambda)$) and has distribution (PMF):

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Several examples of "Poisson processes":

- \# of cars passing through a traffic light in 1 hour
- \# of requests to web servers in an hour

Assume

- \# of photons hitting a light detector in a given interval
fixed average rate
- \# of patients arriving to ER within an hour

Probability Mass Function

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Validity of Distribution

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

We first want to verify that Poisson probabilities sum up to 1 .

$$
\sum_{i=0}^{\infty} P(X=i)=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}=\underbrace{e^{-\lambda}} \sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!}=e^{-\lambda} e^{\lambda}=1
$$

Fact (Taylor series expansion):

$$
e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}
$$

Expectation

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then

$$
\mathbb{E}[X]=\lambda
$$

Proof. $\mathbb{E}[X]=\sum_{i=0}^{\infty} P(X=i) \cdot i=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i=\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!}$

$$
\begin{aligned}
& =\lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \quad j=i^{r}-1 \\
& =\lambda \sum_{\substack{i=0 \\
j<1}}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i,}=1 \text { (see prior slides!) }}{i!}=\lambda \cdot 1=\lambda
\end{aligned}
$$

Variance

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then $\operatorname{Var}(X)=\lambda$
Proof. $\underline{\mathbb{E}\left[X^{2}\right]}=\sum_{i=0}^{\infty} P(X=i) \cdot i^{2}=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i^{2}=\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!} i$ $=\lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \cdot i=\lambda \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot(j+1)$

$\longrightarrow \operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\lambda^{2}+\lambda-\lambda^{2}=(\lambda)$

Agenda

- Zoo of Discrete RVs
- Uniform Random Variables, Part I
- Bernoulli Random Variables, Part I
- Binomial Random Variables, Part I
- Geometric Random Variables
- Negative Binomial Random Variables
- Hypergeometric Random Variables
- Poisson Distribution
- Approximate Binomial distribution using Poisson distribution
- Applications

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i=0,1,2,3 \ldots$,

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Poisson approximates binomial when:
n is very large, p is very small, and $\lambda=n p$ is "moderate"

$$
\text { e.g. }(n>20 \text { and } p<0.05) \text {, }(n>100 \text { and } p<0.1)
$$

Formally, Binomial approaches Poisson in the limit as
$n \rightarrow \infty$ (equivalently, $p \rightarrow 0$) while holding $n p=\lambda$

Probability Mass Function - Convergence of Binomials

$\lambda=5$
$p=\frac{5}{n}$
$n=10,15,20$

From Binomial to Poisson

Example -- Approximate Binomial Using Poisson

Consider sending bit string over a network

- Send bit string of length $n=10^{4}$
- Probability of (independent) bit corruption is $p=10^{-6}$

What is probability that message arrives uncorrupted?
$\begin{aligned} \text { Using } X & \sim \operatorname{Poi}\left(\lambda=n p=10^{4} \cdot 10^{-6}=\frac{\lambda}{0.01}\right) \\ & P(X=0)=e^{-\lambda} \cdot \frac{\lambda^{0}}{0!}=e^{-0.01} \cdot \frac{0.01^{0}}{0!} \approx 0.990049834\end{aligned}$
Using $Y \sim \operatorname{Bin}\left(10^{4}, \frac{p}{\left.10^{-6}\right)} \underset{P(Y=0)}{ } \approx 0.990049829\right)$

