
CSE 312

Foundations of Computing II

Lecture 12: Zoo of Discrete RVS part II
Poisson Distribution
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Announcements

• Midterm info is posted

– Q&A session next Tuesday 4pm on Zoom 

– Practice midterm + other practice materials posted this 
Wednesday
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Zoo of Random Variables�������
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Agenda

• Zoo of Discrete RVs
– Uniform Random Variables, Part I

– Bernoulli Random Variables, Part I

– Binomial Random Variables, Part I

– Geometric Random Variables

– Negative Binomial Random Variables

– Hypergeometric Random Variables

– Poisson Distribution

• Approximate Binomial distribution using Poisson distribution

– Applications
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Geometric Random Variables

A discrete random variable � that models the number of independent 
trials /0 ∼ Ber � before seeing the first success. 

� is called a Geometric random variable with parameter �. 

Notation: � ∼ Geo(�)
PMF: 

Expectation:

Variance:
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Examples:
• # of coin flips until first 

head
• # of random guesses on 

MC questions until you 
get one right

• # of random guesses at a 
password until you hit it



Geometric Random Variables

A discrete random variable � that models the number of independent 
trials /0 ∼ Ber � before seeing the first success.

� is called a Geometric random variable with parameter �. 

Notation: � ∼ Geo(�)
PMF: � � = � = 1 − � � .�
Expectation: 1 � = .

2
Variance: Var � = . 2

23
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Examples:
• # of coin flips until first 

head
• # of random guesses on 

MC questions until you 
get one right

• # of random guesses at a 
password until you hit it



Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You 
have been practicing, so you have a probability of 0.999 of getting each note 
correct (independent of the others). If you mess up a single note in the song, you 
must start over and play from the beginning. Let � be the number of times you 
have to play the song from the start. What is 1[�]?
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Agenda

• Zoo of Discrete RVs
– Uniform Random Variables, Part I

– Bernoulli Random Variables, Part I

– Binomial Random Variables, Part I

– Geometric Random Variables

– Negative Binomial Random Variables

– Hypergeometric Random Variables

– Poisson Distribution

• Approximate Binomial distribution using Poisson distribution

– Applications
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Negative Binomial Random Variables

A discrete random variable � that models the number of independent 
trials /0 ∼ Ber � before seeing the �67 success.                              
Equivalently, � = ∑ 90�0:. where Z0 ∼ Geo(�).

� is called a Negative Binomial random variable with parameters �, �. 

Notation: � ∼ NegBin(�, �)
PMF: � � = � = � .

� .  �� 1 − � � �

Expectation: 1 � = �
2

Variance: Var � = �(. 2)
23
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Hypergeometric Random Variables

A discrete random variable � that models the number of successes in )
draws (without replacement) from ' items that contain ( successes in 
total. � is called a Hypergeometric RV with parameters ', (, ). 

Notation: � ∼ HypGeo(', (, ))
PMF: � � = � =

<
=

>?<
@?=

>
@

Expectation: 1 � = ) *
+

Variance: Var � = ) *(+ *)(+ ,)
+3(+ .)
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Hope you enjoyed the zoo! �������
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Agenda

• Zoo of Discrete RVs
– Uniform Random Variables, Part I

– Bernoulli Random Variables, Part I

– Binomial Random Variables, Part I

– Geometric Random Variables

– Negative Binomial Random Variables

– Hypergeometric Random Variables

– Poisson Distribution

• Approximate Binomial distribution using Poisson distribution

– Applications

13



Preview: Poisson

Model: # events that occur in an hour

– Expect to see 3 events per hour (but will be random)

– The expected number of events in B hours, is 3B
– Occurrence of events on disjoint time intervals is independent

Example – Modelling car arrivals at an intersection

� = # of cars passing through a light in 1 hour
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Example – Model the process of cars passing through a light in 1 hour

� = # cars passing through a light in 1 hour. 
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1[�] = 3

1/)

Assume:   Occurrence of events on disjoint time intervals is independent

What should � be?
pollev.com/paulbeame028

A. 3/)
B. 3)
C. 3
D. 3/60

Divide hour into ) intervals of length 1/)Approximation idea:

This gives us ) independent intervals

Assume at most one car per interval

� = probability car arrives in an interval



Example – Model the process of cars passing through a light in 1 hour

� = # cars passing through a light in 1 hour.       Disjoint time intervals are independent.

16

Know: 1[�] = E for some given E F 0
1 hour

Discrete version: ) intervals, each of length 1/) . 

In each interval, there is a car with probability � = E/) (assume G 1 car can pass by)

Each interval is Bernoulli: �0 = 1 if car in Hth interval (0 otherwise). ���0  1�  E /)
�  ∑ �0,0:.

10 0 1 10 0 0 0 1 1 0

1/)

�~ Bin�), �� � �  H  ,
0

J
,

0 1 � J
,

, 0

indeed! 1 �  �)  E



Don’t like discretization
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Poisson Distribution

• Suppose “events” happen, independently, at an average rate of E per 
unit time.

• Let � be the actual number of events happening in a given time 
unit. Then � is a Poisson r.v. with parameter E (denoted � ~ Poi�E�) 
and has distribution (PMF):
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� �  H  N J ⋅ JP
0!  

Several examples of “Poisson processes”:
• # of cars passing through a traffic light in 1 hour
• # of requests to web servers in an hour
• # of photons hitting a light detector in a given interval
• # of patients arriving to ER within an hour

Siméon Denis Poisson

1781-1840

Assume 
fixed average rate



Probability Mass Function 
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Validity of Distribution

We first want to verify that Poisson probabilities sum up to 1.
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Fact (Taylor series expansion):
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Expectation
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Theorem. If � is a Poisson RV with parameter E, then
1 � = E

1[�] = S � � = H ⋅ H = 
T

0:U
S N J ⋅ E0

H! ⋅ H
T

0:U
= S N J ⋅ E0

(H − 1)!
T

0:.

= E S N J ⋅ E0 .

(H − 1)!
T

0:.

= E S N J ⋅ E0

H!
T

0:U

Proof.

= 1 (see prior slides!)

 E ⋅ 1  E

� �  H  N J ⋅ JP
0!  



Variance
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Theorem. If � is a Poisson RV with parameter E, then Var���  E

1 �!  S � �  H ⋅ H!
T

0:U
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Proof.

 E S N J ⋅ EX

Y! ⋅ Y
T

X:U
+ S N J ⋅ EX

Y!
T

X:U
= E! + E

= 1[�] = E = 1
Similar to the previous proof 
Verify offline. 

Var � = 1[�!] − 1[�]!= E! + E − E! = E

� � = H = N J ⋅ JP
0!  



Agenda

• Zoo of Discrete RVs
– Uniform Random Variables, Part I

– Bernoulli Random Variables, Part I

– Binomial Random Variables, Part I

– Geometric Random Variables

– Negative Binomial Random Variables

– Hypergeometric Random Variables

– Poisson Distribution

• Approximate Binomial distribution using Poisson distribution

– Applications
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Poisson Random Variables
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Definition. A Poisson random variable � with parameter E ≥ 0 is such 
that for all H = 0,1,2,3 …,

� � = H = N J ⋅ JP
0!  

This Photo by Unknown Author is licensed 

under CC BY-NC

Poisson approximates binomial when:
) is very large, � is very small, and   E =  )� is “moderate” 

e.g. () F  20 and � <  0.05 ),  ( ) F  100 and � <  0.1)

Formally, Binomial approaches Poisson in the limit as 
) →  ∞ (equivalently, � →  0) while holding )� =   E



Probability Mass Function – Convergence of Binomials
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From Binomial to Poisson
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Example -- Approximate Binomial Using Poisson 

Consider sending bit string over a network

• Send bit string of length ) =  10a
• Probability of (independent) bit corruption is � =  10 b
What is probability that message arrives uncorrupted?

Using � ~ Poi(E =  )� =  10a ⋅ 10 b =  0.01)

Using / ~ Bin(10a, 10 b)
�(/ = 0)  ≈  0.990049829
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� � = 0 = N J ⋅ EU

0! = N U.U. ⋅ 0.01U

0! ≈ 0.990049834
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Sum of Independent Poisson RVs 
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Theorem. Let �~Poi(E.) and /~Poi(E!) such that E = E. + E!. 

Let 9 = � + /.    For all g = 0,1,2,3 …,

� 9 = g = N J ⋅ Jh
i!  

More generally, let �.~Poi E. , ⋯ , �,~Poi(E,) such that E = Σ0E0. 

Let 9 = Σ0�0
� 9 = g = N J ⋅ Jh

i!  



Sum of Independent Poisson RVs 
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Theorem. Let �~Poi(E.) and /~Poi(E!) such that E = E. + E!. 

Let 9 = � + /. For all g = 0,1,2,3 …,

� 9 = g = N J ⋅ Jh
i!  

� 9 = g = ? 
1.  � 9 = g = ΣX:Ui  � � = Y, / = g − Y
2.  � 9 = g = ΣX:UT � � = Y, / = g − Y
3.  � 9 = g = ΣX:Ui � / = g − Y|� = Y  �(� = Y)
4. � 9  g  ΣX:Ui � /  g � Y|�  Y

pollev.com/paulbeame028

A. All of them are right 
B. The first 3 are right 
C. Only 1 is right
D. Don’t know 



Proof
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� 9  g  ΣX:Ui � �  Y, / = g − Y

= ΣX:Ui � � = Y) �(/ = g − Y = ΣX:Ui   N Jn ⋅ E.
X

Y! ⋅ N J3 ⋅ E!
i X

g − Y!
= N Jn J3  ΣX:Ui  ⋅ 1

Y! g − Y! ⋅ E.
X E!

i X

= N J  ΣX:Ui  g!
Y! g − Y! ⋅ E.

X E!
i X 1

g!
= N J ⋅ E. + E! i ⋅ .

i! = N J ⋅ Ei ⋅ .
i!

Law of total probability

Independence

Binomial 
Theorem
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General principle: 
• Events happen at an average rate 

of E per time unit 
• Number of events happening at a 

time unit � is distributed 
according to Poi(E) 

Definition. A Poisson random variable � with parameter E ≥ 0 is such 
that for all H = 0,1,2,3 …,

� � = H = N J ⋅ JP
0!  

• Poisson approximates Binomial when ) is large, 
� is small, and )� is moderate

• Sum of independent Poisson is still a Poisson

Poisson Random Variables


