CSE 312
Foundations of Computing II
Lecture 15: Normal Distribution \& Central Limit Theorem
Midterm Wed in class. See Edstem
OH Today after Clap.

Midterm QLA Session tomorrow

$$
y=\infty \quad p m
$$

zoom: lint later

Review Continuous RVs

Probability Density Function (PDF).
$f: \mathbb{R} \rightarrow \mathbb{R}$ s.t.

- $f(x) \geq 0$ for all $x \in \mathbb{R}$
- $\int_{-\infty}^{+\infty} f(x) \mathrm{d} x=1$

Area $=1$

Density \neq Probability !

Cumulative Distribution Function (CDF).
$F(y)=\int_{-\infty}^{y} f(x) \mathrm{d} x$ Theorem. $f(x)=\frac{d F(x)}{d x}$

$$
F_{X}(y)=P(X \leq y)
$$

户

Review Continuous RVs

Review Exponential Distribution

Definition. An exponential random variable X with parameter $\lambda \geq 0$ is follows the exponential density

$$
f_{X}(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

We write $X \sim \operatorname{Exp}(\lambda)$ and say X that follows the exponential distribution.

$$
\begin{gathered}
\text { CDF: For } y \geq 0, \\
F_{X}(y)=1-e^{-\lambda y}
\end{gathered}
$$

Agenda

- Normal Distribution
- Practice with Normals
- Central Limit Theorem (CLT)

The Normal Distribution

Definition. A Gaussian (or normal) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \geq 0$ has density

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}\left(\mu, \frac{\left.\mathscr{C}^{2}\right)}{}\right.$.

The Normal Distribution

Definition. A Gaussian (or normal) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \geq 0$ has density

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Carl Friedrich Gauss

We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

$$
\text { Fact. If } X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \text {, then } \mathbb{E}[X]=\mu \text {, and } \operatorname{Var}(X)=\sigma^{2}
$$

Proof of expectation is easy because density curve is symmetric around μ, $f_{X}(\mu-x)=f_{X}(\mu+x)$, but proof for variance requires integration of $e^{-x^{2} / 2}$

The Normal Distribution
Aka a "Bell Curve" (imprecise name)

Closure of normal distribution - Under Shifting and Scaling

Fact. If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $Y=a X+b \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)$

Proof. $\quad \mathbb{E}[Y]=a \mathbb{E}[X]+b=a \mu+b$

$$
\operatorname{Var}(Y)=a^{2} \operatorname{Var}(X)=a^{2} \sigma^{2}
$$

Can show with algebra that the PDF of $Y=a X+b$ is still normal.

CDF of normal distribution

Fact. If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $Y=a X+b \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)$

Standard (unit) normal $=\mathcal{N}(0,1)$
CDF. $\Phi(z)=P(Z \leq z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{Z} e^{-x^{2} / 2} \mathrm{~d} x$ for $Z \sim \mathcal{N}(0,1)$
Note: $\Phi(z)$ has no closed form - generally given via tables

If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $\left.F_{X}(z)=P(X \leq z)=P\left(\frac{X-\mu}{\sigma} \leq \frac{z-\mu}{\sigma}\right)=\Phi\left(\frac{z-\mu}{\sigma}\right)\right)$

Table of Standard Cumulative Normal Density

$P(Z \leq 1.09)=\Phi(1.09) \approx 0.8621$

What is

$$
=\Phi(-1.09)
$$

$P(Z \leq-1.09)$?
$=1-\Phi(1.09)$

Poll:

pollev.com/paulbeame028
a. 0.1379
b. 0.8621
C. 0
d. Not able to compute

Closure of the normal -- under addition

Fact. If $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right), \mathrm{Y} \sim \mathcal{N}\left(\mu_{Y}, \sigma_{\underline{Y}}^{2}\right)$ (both independent normal RV) then $\underline{\underline{X} X}+b Y+\bar{c} \sim \mathcal{N}\left(a \mu_{X}+b \mu_{Y}+c, a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}\right)$

Note: The special thing is that the sum of normal RVs is still a normal RV.
The values of the expectation and variance are not surprising.

Why not surprising?

- Linearity of expectation (always true)
- When X and Y are independent, $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)$

Agenda

- Normal Distribution
- Practice with Normals
- Central Limit Theorem (CLT)

What about Non-standard normal?

If $X \sim \underset{\mathcal{N}}{\mathcal{N}\left(\mu, \sigma^{2}\right)}$, then $\frac{X-\mu}{\frac{X}{z}} \sim \mathcal{N}(0,1)$
Therefore,

$$
F_{X}(z)=P(\underline{X \leq z)}=P\left(\frac{X-\mu}{\frac{z}{z}} \leq \frac{\square\left(\frac{z-\mu}{\sigma}\right)}{\sim}\right)=\underbrace{\frac{Z-\mu}{\sigma}})
$$

Example

$$
N=0,4
$$

Let $X \sim \mathcal{N}(\underbrace{0.4}_{\sigma=2}=\sigma^{2})$.
$\frac{8}{2}=.4$
$\frac{P(X \leq 1.2)}{4}=P\left(\frac{\underline{X}-\underline{0.4}}{2} \leq \frac{1.2-0.4}{2}\right)$

Example $\quad \mu=3$ $6=4$
Let $X \sim \mathcal{N}(3,16)$.

$$
\begin{aligned}
P(2<X<5) & =P\left(\frac{2-3}{4}<\frac{X-3}{4}<\frac{5-3}{4}\right) \\
& =P\left(-\frac{1}{4}<Z<\frac{1}{2}\right) \quad Z \cup(0,1) \\
& =\Phi\left(\frac{1}{2}\right)-\Phi\left(-\frac{1}{4}\right) \\
& =\Phi\left(\frac{1}{2}\right)-\left(1-\Phi\left(\frac{1}{4}\right)\right) \approx 0.29017
\end{aligned}
$$

Example - How Many Standard Deviations Away?

$$
\begin{aligned}
& \text { Let } X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) . \\
& \qquad \begin{aligned}
& P(|X-\mu|<k \sigma)=P\left(\frac{|X-\mu|}{\sigma}<k\right)= \\
&=P\left(-k<\frac{X-\mu}{\sigma}<k\right)=\Phi(k)-\Phi(-k) \\
& \text { e.g. } k \doteq 1: 68 \% \\
& k=2: 95 \% \\
& k=3: 99 \%
\end{aligned}
\end{aligned}
$$

Halloween Brain Break

Normal Distribution

Paranormal Distribution

Agenda

- Normal Distribution
- Practice with Normals
- Central Limit Theorem (CLT)

Gaussian in Nature

Empirical distribution of collected data often resembles a Gaussian ...

e.g. Height distribution resembles Gaussian.
R.A.Fisher (1918) observed that the height is likely the outcome of the sum of many independent random parameters, i.e., can written as

$$
X=X_{1}+\cdots+X_{n}
$$

Sum of Independent RVs i.i.d. = independent and identically distributed

X_{1}, \ldots, X_{n} i.i.d. with expectation μ and variance σ^{2}
Define

$$
S_{n}=X_{1}+\cdots+X_{n}
$$

$\mathbb{E}\left[S_{n}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]=n \mu$
$\operatorname{Var}\left(S_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)=n \sigma^{2}$

Empirical observation: S_{n} looks like a normal RV as n grows.

Example: Sum of n i.i.d. $\operatorname{Exp}(1)$ random variables

(a) $n=1$

(e) $n=12$

(b) $n=2$

(f) $n=25$

(c) $n=3$

(g) $n=50$

(d) $n=6$

(h) $n=100$

CLT (Idea)

CLT (Idea)

Central Limit Theorem

X_{1}, \ldots, X_{n} i.i.d., each with expectation μ and variance σ^{2}
Define $S_{n}=X_{1}+\cdots+X_{n}$ and $\sigma_{\text {new }}^{2}=n \sigma^{2}$

$$
Y_{n}=\frac{S_{n}-\sqrt{n \mu}}{\sigma \sqrt{n}} n_{\frac{1}{5 \sqrt{n}}} \sigma_{\text {new }}=\sqrt{n \cdot \sigma}
$$

$\mathbb{E}\left[Y_{n}\right]=\frac{1}{\sigma \sqrt{n}}\left(\mathbb{E}\left[S_{n}\right]-n \mu\right)=\frac{1}{\sigma \sqrt{n}}(n \mu-n \mu)=0$
$\operatorname{Var}\left(Y_{n}\right)=\frac{1}{\sigma^{2} n}\left(\operatorname{Var}\left(S_{n}-n \mu\right)\right)=\frac{\operatorname{Var}\left(S_{n}\right)}{\sigma^{2} n}=\frac{\sigma^{2} n}{\sigma^{2} n}=1$

Central Limit Theorem

$$
Y_{n}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}
$$

Theorem. (Central Limit Theorem) The CDF of Y_{n} converges to the CDF of the standard normal $\mathcal{N}(0,1)$, i.e.,

$$
\lim _{n \rightarrow \infty} P\left(Y_{n} \leq y\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-x^{2} / 2} \mathrm{~d} x
$$

Central Limit Theorem

$$
Y_{n}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}
$$

Theorem. (Central Limit Theorem) The CDF of Y_{n} converges to the CDF of the standard normal $\mathcal{N}(0,1)$, i.e.,

$$
\lim _{n \rightarrow \infty} P\left(Y_{n} \leq y\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-x^{2} / 2} \mathrm{~d} x
$$

Also stated as:

- $\lim _{n \rightarrow \infty} Y_{n} \rightarrow \mathcal{N}(0,1) \in \mathcal{L}$

$$
\frac{n 6^{2}}{n^{2}}
$$

- $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$ for $\mu=\mathbb{E}\left[X_{i}\right]$ and $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)$

CLT \rightarrow Normal Distribution EVERYWHERE

S\&P 500 Returns after Elections

Examples from:

https://galtonboard.com/probabilityexamplesinlife

