
CSE 312

Foundations of Computing II

Lecture 18: Joint Distributions
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Midterm

• Grading is not finished in time for today

– After grading I will review for fairness before releasing grades

– With the Friday holiday, grades won’t be ready until Monday

– Solutions will be posted on Canvas pages for Monday

• Please focus on the course content and problem sets while 
you are waiting…
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Agenda

• Joint Distributions

– Cartesian Products

– Joint PMFs and Joint Range

– Marginal Distribution

• Conditional Expectation and Law of Total Expectation
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Why joint distributions?

• Given all of its user’s ratings for different movies, and any
preferences you have expressed, Netflix wants to recommend a new 
movie for you.

• Given a large amount of medical data correlating symptoms and 
personal history with diseases, predict what is ailing a person with a 
particular medical history and set of symptoms.

• Given current traffic, pedestrian locations, weather, lights, etc. decide 
whether a self-driving car should slow down or come to a stop
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Review Cartesian Product
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Definition. Let � and � be sets. The Cartesian product of � and � is 
denoted � × � = �, � ∶ � ∈ �, � ∈ �
Example.1,2,3 × 4, 5 = 1, 4 , 1,5 , 2,4 , 2,5 , 3, 4 , (3,5)

If � and � are finite sets, then � × � = � ⋅ � .

The sets don’t need to be finite!  You can have ℝ × ℝ (often denoted ℝ�)



Joint PMFs and Joint Range
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Definition. Let � and � be discrete random variables. The Joint PMF  
of � and � is ��,�(�, �) = � (� = �, � = �)
Definition. The joint range of ��,� isΩ�,� = �, � ∶ ��,� �, � > 0 ⊆ Ω� × Ω�

Note that

! ��,� ", # = 1$
%,& ∈'(,)



Example – Weird Dice

Suppose I roll two fair 4-sided die independently. Let � be the value of the first die, 
and � be the value of the second die. 

Ω� = 1,2,3,4 and Ω� = *1,2,3,4+
In this problem, the joint PMF is if

��,� ,, - =  .1/16      if ,, - ∈ Ω�,�  0            otherwise      

and the joint range is (since all combinations have non-zero probability)

Ω�,� = Ω� × Ω1
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X\Y 1 2 3 4

1 1/16 1/16 1/16 1/16

2 1/16 1/16 1/16 1/16

3 1/16 1/16 1/16 1/16

4 1/16 1/16 1/16 1/16



Example – Weirder Dice

Suppose I roll two fair 4-sided die independently. Let � be the value of the first die, 
and � be the value of the second die.  Let 2 = min �, � and 6 = max (�, �)
Ω9 = 1,2,3,4 and Ω: = *1,2,3,4+
Ω9,: = ;, < ∈ Ω9 × Ω:: ; > < ? Ω9 × Ω:

Poll:  pollev.com/paulbeame028
What is �9,: 1, 3 � ��2 � 1, 6 � 3� ?a.  1/16b.  2/16
c. 1/2d.  Not sure

U\W 1 2 3 4

1

2

3
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Example – Weirder Dice

Suppose I roll two fair 4-sided die independently. Let � be the value of the first die, 
and � be the value of the second die. Let 2 � min �, � and 6 � max ��, ��Ω9 � 1,2,3,4 and Ω: � *1,2,3,4+
Ω9,: � ;, < ∈ Ω9 � Ω:: ; > < ? Ω9 � Ω:
The joint PMF �9,: ;, < � ��2 � ;, 6 � <� is

�9,: ;, < �  K 2/16           if ;, < ∈ Ω9 � Ω: where < � ;1/16           if ;, < ∈ Ω9 � Ω: where < � ;0                  otherwise                                               

U\W 1 2 3 4

1 1/16 2/16 2/16 2/16

2 0 1/16 2/16 2/16

3 0 0 1/16 2/16

4 0 0 0 1/16



Example – Weirder Dice

Suppose I roll two fair 4-sided die independently. Let � be the value of the first die, 
and � be the value of the second die.  Let 2 � min �, � and 6 � max ��, ��
Suppose we didn’t know how to compute ��2 � ;� directly. Can we figure it out if 
we know �9,:�;, <�?

U\W 1 2 3 4

1 1/16 2/16 2/16 2/16

2 0 1/16 2/16 2/16

3 0 0 1/16 2/16

4 0 0 0 1/16

�9 1 ��9 2 ��9 3 ��9 4 �

Just apply LTP over the possible values of 6:

7/165/163/161/16



Marginal PMF
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Definition. Let � and � be discrete random variables and ��,� �, �
their joint PMF. The marginal PMF  of �

����� � ! ��,���, ��$
M∈')

Similarly,  ����� � ∑ ��,���, ��$O∈'(



Continuous distributions on ℝ � ℝ
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Definition. The joint probability density function (PDF) of continuous 
random variables � and � is a function P�,� defined on ℝ � ℝ such that 

• P�,� ,, - Q 0 for all ,, - ∈ ℝ
• R R P�,� ,, - d, d- = 1STSSTS
for � ⊆ ℝ � ℝ the probability that �, � ∈ � is ∬ P�,� ,, -  d,d-V
The  (marginal) PDFs P� and P� are given by

– P� , = R P�,� ,, -  d-STS
– P� - = R P�,� ,, -  d,STS



Independence and joint distributions
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Definition. Continuous random variables � and � are independent iff

• P�,� ,, - = P� , ⋅ P�(-) for all ,, - ∈ ℝ

Definition. Discrete random variables � and � are independent iff

• ��,� ,, - = �� , ⋅ ��(-) for all , ∈ Ω�, - ∈ Ω�



Example – Uniform distribution on a unit disk
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1

1

-1

-1

0

This is a disk of radius 1 which has area W
Suppose that a pair of random variabes ��, �) is chosen uniformly 
from the set of real points �,, -) such that ,� X y� > 1

P�,� ,, - = K 1W        if ,� X -� > 10        otherwise       
Poll:  pollev.com/paulbeame028
Are � and � independent?
a. Yes
b. No

P� , = ] 1W d-^T_`$
T ^T_`$

= 2 1 a ,�$ /W



Joint Expectation
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Definition. Let � and � be discrete random variables and ��,� �, �
their joint PMF. The expectation of some function b(,, -) with inputs � and �

c[b �, � ] = ! ! b �, � ⋅ ��,� (�, �)$
M∈')

 

$
O∈'(



Brain Break
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Agenda

• Joint Distributions

– Cartesian Products

– Joint PMFs and Joint Range

– Marginal Distribution

• Conditional Expectation and Law of Total Expectation
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Conditional Expectation
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Definition. Let � be a discrete random variable then the conditional 
expectation of � given event � is

c �  �] = ! , ⋅ � � = , �)$
_  ∈ '(

Notes:
• Can be phrased as a “random variable version”c �  � = -]
• Linearity of expectation still applies herec �� + �� + �  �] = � c �  �] + � c �  �] + �



Law of Total Expectation
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Law of Total Expectation (event version). Let � be a random variable 
and let events �^, … , �g partition the sample space. Then,

c[�] = ! c �  �h ⋅ � (�h)g
hi^

Law of Total Expectation (random variable version). Let � be a 
random variable and � be a discrete random variable. Then,

c[�] = ! c �  � = - ⋅ � (� = -)$
j ∈')



Proof of Law of Total Expectation

Follows from Law of Total Probability and manipulating sums

c � = ! , ⋅ �(� = ,)$
_ ∈'(

           = ! , ⋅ ! � � = , �h) ⋅ � (�h)g
hi^

$
_ ∈'(

                              
            = ! � �h ! , ⋅ � � = , �h)$

_∈'(
g

hi^
            = ! � �h ⋅ c � �h]g

hi^
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(by LTP)

(change order of sums)

(def of cond. expect.)



Example – Flipping a Random Number of Coins

Suppose someone gave us � ∼ Poi(5) fair coins and we wanted to compute the 
expected number of heads � from flipping those coins.

By the Law of Total Expectation

c � = ! c �  � = m] ⋅ � � = m = ! m2 ⋅ ��� � m�S
hin

S
hin

                                                                         = 12 ⋅ ! m ⋅ � � � mS
hin� �̂ ⋅ c � � �̂ ⋅ 5 = 2.5
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Example – Computer Failures (a familiar example)

Suppose your computer operates in a sequence of steps, and that at each step m
your computer will fail with probability � (independently of other steps). 

Let � be the number of steps it takes your computer to fail. 

What is c[�]?
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Let � be the indicator random variable for the event of failure in step 1
Then by LTE,  c � � c �  � = 1] ⋅ � � � 1 X c �  � = 0] ⋅ � � = 0= 1 ⋅ � X c �  � = 0] ⋅ 1 a �� � X 1 X c � ⋅ 1 a � since if � � 0 experiment  

starting at step 2 looks like   
original experiment

Solving we get c � = 1/�



Covariance:  How correlated are � and �? 

Recall that if � and � are independent, c �� = c � ⋅ c[�]
Definition:  The covariance of random variables � and �,Cov �, � = c �� − c � ⋅ c[�]
Unlike variance, covariance can be positive or negative.  It has 
has value 0 if the random variables are independent.
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Two Covariance examples:
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Cov �, � = c �� − c � ⋅ c[�]
Suppose � ∼ Bernoulli(�)

If random variable � = � thenCov �, � = c �� − c � � = Var � = �(1 − �)

If random variable t = −� then
Cov �, t = c �t − c � ⋅ c t

= c −�� − c � ⋅ c −�

= −c �� + c � � = −Var � = −�(1 − �)



Reference Sheet (with continuous RVs)
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