CSE 312
 Foundations of Computing II

Lecture 19: More Joint Distributions
Tail Bounds part I

Midterm

- Scores released at 2:30pm after class
- Breathe \& relax!

Average: 72.37 Standard Deviation: 17.85 (Median: 77)

Scores	$90+$	80 s	70 s	60 s	50 s	<50
\# of students	21	44	36	21	13	20

- Too much reading/harder than intended
- Solutions available on Canvas Pages
- Regrade requests via e-mail only (to me) for major issues.
*Average 76.43 for students answering ≥ 10 PollEv polls

Review Joint PMFs and Joint Range

Definition. Let X and Y be discrete random variables. The Joint PMF of X and Y is

$$
p_{X, Y}(a, b)=P(X=a, Y=b)
$$

Definition. The joint range of $p_{X, Y}$ is

$$
\Omega_{X, Y}=\left\{(c, d): p_{X, Y}(c, d)>0\right\} \subseteq \Omega_{X} \times \Omega_{Y}
$$

Note that

$$
\sum_{(s, t) \in \Omega_{X, Y}} p_{X, Y}(s, t)=1
$$

Review Marginal PMF

Definition. Let X and Y be discrete random variables and $p_{X, Y}(a, b)$ their joint PMF. The marginal PMF of X

$$
p_{X}(a)=\sum_{b \in \Omega_{Y}} p_{X, Y}(a, b)
$$

Similarly, $p_{Y}(b)=\sum_{a \in \Omega_{X}} p_{X, Y}(a, b)$

Review Continuous distributions on $\mathbb{R} \times \mathbb{R}$

Definition. The joint probability density function (PDF) of continuous random variables X and Y is a function $f_{X, Y}$ defined on $\mathbb{R} \times \mathbb{R}$ such that

- $f_{X, Y}(x, y) \geq 0$ for all $x, y \in \mathbb{R}$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y=1$
for $A \subseteq \mathbb{R} \times \mathbb{R}$ the probability that $(X, Y) \in A$ is $\iint_{A} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y$
The (marginal) PDFs f_{X} and f_{Y} are given by

$$
\begin{aligned}
& -f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y \\
& -f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x
\end{aligned}
$$

Review Conditional Expectation

Definition. Let X be a discrete random variable then the conditional expectation of X given event A is

$$
\mathbb{E}[X \mid A]=\sum_{x \in \Omega_{X}} x \cdot P(X=x \mid A)
$$

Notes:

- Can be phrased as a "random variable version"

$$
\mathbb{E}[X \mid Y=y]
$$

- Linearity of expectation still applies here

$$
\mathbb{E}[a X+b Y+c \mid A]=a \mathbb{E}[X \mid A]+b \mathbb{E}[Y \mid A]+c
$$

Review Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable and let events A_{1}, \ldots, A_{n} partition the sample space. Then,

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X \mid A_{i}\right] \cdot P\left(A_{i}\right)
$$

Law of Total Expectation (random variable version). Let X be a random variable and Y be a discrete random variable. Then,

$$
\mathbb{E}[X]=\sum_{y \in \Omega_{Y}} \mathbb{E}[X \mid Y=y] \cdot P(Y=y)
$$

Agenda

- Joint Distributions
- Another LTE example
- Conditional expectation and LTE for continuous RVs
- Covariance
- Tail Bounds
- Markov’s Inequality

Example - Computer Failures (a familiar example)

Suppose your computer operates in a sequence of steps, and that at each step i your computer will fail with probability q (independently of other steps).
Let X be the number of steps it takes your computer to fail.
What is $\mathbb{E}[X]$?

What kind of RV is X ?

Recall - Flipping a biased coin until you see heads

- Biased coin:

$$
\begin{aligned}
& P(H)=q>0 \\
& P(T)=1-q
\end{aligned}
$$

$$
\begin{aligned}
& P(X=i)=q(1-q)^{i-1} \\
& \mathbb{E}[X]=\sum_{i=1}^{\infty} i \cdot P(X=i)=\sum_{i=1}^{\infty} i \cdot q(1-q)^{i-1}
\end{aligned}
$$

$$
\text { Converges, so } \mathbb{E}[X] \text { is finite }
$$

Can calculate this directly ...

Analysis - Flipping a biased coin until you see heads

$$
\mathbb{E}[X]=\sum_{i=1}^{\infty} i \cdot q(1-q)^{i-1}=q \sum_{i=1}^{\infty} i(1-q)^{i-1} \quad \text { Converges, so } \mathbb{E}[X] \text { is finite }
$$

So $\quad \mathbb{E}[X]=q\left[1+2(1-q)+3(1-q)^{2}+\cdots+i(1-q)^{i-1}+\cdots\right]$
Then $(1-q) \mathbb{E}[X]=q[$

$$
\left.(1-q)+2(1-q)^{2}+\cdots+(i-1)(1-q)^{i-1}+\cdots\right]
$$

Subtracting gives

$$
\begin{aligned}
& q \mathbb{E}[X]=q\left[1+(1-q)+(1-q)^{2}+\cdots+(1-q)^{i-1}+\cdots\right] \\
& q \mathbb{E}[X]=q\left[\frac{1}{1-(1-q)}\right]=1 \quad \text { since for } 0<r<1, \sum_{i=0}^{\infty} r^{i}=\frac{\mathbf{1}}{\mathbf{1 - r}} \\
& \quad \text { Therefore } \mathbb{E}[X]=1 / q
\end{aligned}
$$

Same examples with the LTE

Suppose your computer operates in a sequence of steps, and that at each step i your computer will fail with probability q (independently of other steps).
Let X be the number of steps it takes your computer to fail.
What is $\mathbb{E}[X]$?
Let Y be the indicator random variable for the event of failure (heads) in step 1

Then by LTE, $\mathbb{E}[X]=\mathbb{E}[X \mid Y=1] \cdot P(Y=1)+\mathbb{E}[X \mid Y=0] \cdot P(Y=0)$

$$
=1 \cdot q+\mathbb{E}[X \mid Y=0] \cdot(1-q)
$$

$$
=q+(1+\mathbb{E}[X]) \cdot(1-q) \quad \text { since if } Y=0 \text { experiment }
$$ starting at step 2 looks like original experiment

Solving we get $\mathbb{E}[X]=1 / q$

Conditional Expectation again...

Definition. Let X be a discrete random variable; then the conditional expectation of X given event A is

$$
\mathbb{E}[X \mid A]=\sum_{x \in \Omega_{X}} x \cdot P(X=x \mid A)
$$

Therefore for X and Y discrete random variables, the conditional expectation of X given $Y=y$ is

$$
\mathbb{E}[X \mid Y=y]=\sum_{x \in \Omega_{X}} x \cdot P(X=x \mid Y=y)=\sum_{x \in \Omega_{X}} x \cdot p_{X \mid Y}(x \mid y)
$$

where we define $p_{X \mid Y}(x \mid y)=P(X=x \mid Y=y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}$

Conditional Expectation - Discrete \& Continuous

Discrete: Conditional PMF: $\quad p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}$
Conditional Expectation: $\mathbb{E}[X \mid Y=y]=\sum_{x \in \Omega_{X}} x \cdot p_{X \mid Y}(x \mid y)$
Continuous: Conditional PDF: $\quad f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$
Conditional Expectation: $\quad \mathbb{E}[X \mid Y=y]=\int_{-\infty}^{\infty} x \cdot f_{X \mid Y}(x \mid y) d x$

Law of Total Expectation - continuous

Law of Total Expectation (event version). Let X be a random variable and let events A_{1}, \ldots, A_{n} partition the sample space. Then,

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X \mid A_{i}\right] \cdot P\left(A_{i}\right)
$$

Law of Total Expectation (random variable version). Let X and Y be continuous random variables. Then,

$$
\mathbb{E}[X]=\int_{-\infty}^{\infty} \mathbb{E}[X \mid Y=y] \cdot f_{Y}(y) d y
$$

Using LTE for Continuous RVs

PDF for $\operatorname{Exp}(\lambda)$ is $\left\{\begin{array}{cc}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & \text { o. w. }\end{array}\right.$
Expectation is $1 / \lambda$

Suppose that we first choose $Y \sim \operatorname{Exp}(1 / 2)$ and then choose $X \sim \operatorname{Exp}(Y) . \quad$ What is $\mathbb{E}[X]$?

$$
\begin{array}{r}
f_{X \mid Y}(x \mid y)=y e^{-x / y} \\
\mathbb{E}[X \mid Y=y]=\int_{-\infty}^{\infty} x \cdot f_{X \mid Y}(x \mid y) d x=\int_{-\infty}^{\infty} x \cdot y e^{-x / y} d x=y \\
\mathbb{E}[X]=\int_{-\infty}^{\infty} \mathbb{E}[X \mid Y=y] f_{Y}(y) d y=\int_{-\infty}^{\infty} y \cdot 2 e^{-y / 2} d x=2
\end{array}
$$

Reference Sheet (with continuous RVs)

	Discrete	Continuous
Joint PMF/PDF	$p_{X, Y}(x, y)=P(X=x, Y=y)$	$f_{X, Y}(x, y) \neq P(X=x, Y=y)$
Joint CDF	$F_{X, Y}(x, y)=\sum_{t \leq x} \sum_{S \leq y} p_{X, Y}(t, s)$	$F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t$
Normalization	$\sum_{x} \sum_{y} p_{X, Y}(x, y)=1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$
Marginal PMF/PDF	$p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$	$f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
Expectation	$E[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)$	$E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$
Conditional PMF/PDF	$p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}$	$f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$
Conditional Expectation	$E[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)$	$E[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x$
Independence	$\forall x, y, p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$	$\forall x, y, f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$

Brain Break

Agenda

- Joint Distributions
- Another LTE example
- Conditional expectation and LTE for continuous RVs
- Covariance
- Tail Bounds
- Markov’s Inequality

Covariance: How correlated are X and Y ?

Recall that if X and Y are independent, $\mathbb{E}[X Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Definition: The covariance of random variables X and Y,

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \cdot \mathbb{E}[Y]
$$

Unlike variance, covariance can be positive or negative. It has has value 0 if the random variables are independent.

Two Covariance examples:

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \cdot \mathbb{E}[Y]
$$

Suppose $X \sim \operatorname{Bernoulli}(p)$

If random variable $Y=X$ then

$$
\operatorname{Cov}(X, Y)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\operatorname{Var}(X)=p(1-p)
$$

If random variable $Z=-X$ then

$$
\begin{aligned}
\operatorname{Cov}(X, Z) & =\mathbb{E}[X Z]-\mathbb{E}[X] \cdot \mathbb{E}[Z] \\
& =\mathbb{E}\left[-X^{2}\right]-\mathbb{E}[X] \cdot \mathbb{E}[-X] \\
& =-\mathbb{E}\left[X^{2}\right]+\mathbb{E}[X]^{2}=-\operatorname{Var}(X)=-p(1-p)
\end{aligned}
$$

Agenda

- Joint Distributions
- Another LTE example
- Conditional expectation and LTE for continuous RVs
- Covariance
- Tail Bounds
- Markov's Inequality

Tail Bounds (Idea)

Bounding the probability that a random variable is far from its mean. Usually statements of the form:

$$
\begin{gathered}
P(X \geq a) \leq b \\
P(|X-\mathbb{E}[X]| \geq a) \leq b
\end{gathered}
$$

Useful tool when

- An approximation that is easy to compute is sufficient
- The process is too complex to analyze exactly

Markov's Inequality

Theorem. Let X be a random variable taking only non-negative values. Then, for any $t>0$,

$$
P(X \geq t) \leq \frac{\mathbb{E}[X]}{t}
$$

(Alternative form) For any $k \geq 1$,

$$
P(X \geq k \cdot \mathbb{E}[X]) \leq \frac{1}{k}
$$

Incredibly simplistic - only requires that the random variable is non-negative and only needs you to know expectation. You don't need to know anything else about the distribution of X.

Markov's Inequality - Proof I

Theorem. Let X be a (discrete) random variable taking only non-negative values. Then, for any $t>0$,

$$
\mathbb{P}(X \geq t) \leq \frac{\mathbb{E}[X]}{t}
$$

$$
\begin{array}{rlrl}
\mathbb{E}[X] & =\sum_{x} x \cdot P(X=x) & & \begin{array}{l}
\geq 0 \text { because } x \geq 0 \\
\text { whenever } P(X=x) \geq 0 \\
\text { (} X \text { takes only non-negative } \\
\text { values })
\end{array} \\
& =\sum_{x \geq t} x \cdot P(X=x)+\sum_{x<t} x \cdot P(X=x) \\
& \geq \sum_{x \geq t} x \cdot P(X=x) & & \\
& \geq \sum_{x \geq t} t \cdot P(X=x)=t \cdot P(X \geq t) & & \text { Follows by re-arranging terms }
\end{array}
$$

Markov's Inequality - Proof II

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{0}^{\infty} x \cdot f_{X}(x) \mathrm{d} x \\
& =\int_{t}^{\infty} x \cdot f_{X}(x) \mathrm{d} x+\int_{0}^{t} x \cdot f_{X}(x) \mathrm{d} x \\
& \geq \int_{t}^{\infty} x \cdot f_{X}(x) \mathrm{d} x \\
& \geq \int_{t}^{\infty} t \cdot f_{X}(x) \mathrm{d} x=t \cdot \int_{t}^{\infty} f_{X}(x) \mathrm{d} x=t \cdot P(X \geq t)
\end{aligned}
$$

$$
\text { so } P(X \geq t) \leq \mathbb{E}[X] / t \text { as before }
$$

Example - Geometric Random Variable

Let X be geometric RV with parameter p

$$
P(X=i)=(1-p)^{i-1} p \quad \mathbb{E}[X]=\frac{1}{p}
$$

" X is the number of times Alice needs to flip a biased coin until she sees heads, if heads occurs with probability p ?

What is the probability that $X \geq 2 \mathbb{E}[X]=2 / p$?
Markov's inequality: $P(X \geq 2 \mathbb{E}[X]) \leq \frac{1}{2}$

Example

Suppose that the average number of ads you will see on a website is 25 . Give an upper bound on the probability of seeing a website with 75 or more ads.

```
Poll: pollev.com/paulbeame028
a. 0}\leqp<0.2
b. }0.25\leqp<0.
c. }0.5\leqp<0.7
d. }0.75\leq
e. Unable to compute
```


Example

Suppose that the average number of ads you will see on a website is 25 . Give an upper bound on the probability of seeing a website with 20 or more ads.

```
Poll: pollev.com/paulbeame028
a. 0}\leqp<0.2
b. }0.25\leqp<0.
c. }0.5\leqp<0.7
d. }0.75\leq
e. Unable to compute
```


Example - Geometric Random Variable

Let X be geometric RV with parameter p

$$
P(X=i)=(1-p)^{i-1} p \quad \mathbb{E}[X]=\frac{1}{p}
$$

" X is Next time we will see that we can get better tail bounds using variance
e sees heads, if 1 probability p ?

What is the probability that $X \geq 2 \mathbb{E}[X]=2 / p$?
Markov's inequality: $P(X \geq 2 \mathbb{E}[X]) \leq \frac{1}{2}$

