CSE 312
Foundations of Computing i

Lecture 19: More Joint Distributions
Tail Bounds part |



Midterm

» Scores released at 2:30pm after class
— Breathe & relax!

Average: 72.37 Standard Deviation: 17.85 (Median: 77)
m-m-mm

# of students

* Too much reading/harder than intended
* Solutions available on Canvas Pages
» Regrade requests via e-mail only (to me) for major issues.

*Average 76.43 for students answering 210 PollEv polls



Joint PMFs and Joint Range

Definition. Let X and Y be discrete random variables. The Joint PMF
of Xand Y is

px’y(a, b) = P(X = a,Y = b)

——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

Definition. The joint range of py y is
Qxy ={(c,d) : pxy(c,d) > 0} S Qx X Qp

______________________________________________________________________________________________________________________________________________________________________

Z pxy(s,t) =1

(s,t)EQxy

Note that



Marginal PMF

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

Definition. Let X and Y be discrete random variables and py y(a, b)
 their joint PMF. The marginal PMF of X

px(@) = ) pxy(a,b)
bEQY

_____________________________________________________________________________________________________________________________________________________________________

Similarly, py(b) = Zaeﬂx pxy(a,b)



Continuous distributions on R x R

- Definition. The joint probability density function (PDF) of continuous

random variables X and Y is a function fy , defined on R X R such that
* fxy(x,y) =>0forallx,y €R

’ fjooo fjooo fxy(x,y)dxdy =1

for A € R X R the probability that (X,Y) € Ais [, fxy(x,y) dxdy

~ The (marginal) PDFs fy and fy are given by

- fx(x) = fjooo fxy(x,y) dy )
- () = f_oooo fxy(x,y) dx =8

__________________________________________________________________________________________________________________




Conditional Expectation

_____________________________________________________________________________________________________________________________________________________________________

Definition. Let X be a discrete random variable then the conditional
~ expectation of X given event A is

E|X | A] = Z x-P(X=x|A)

x €Qx
Notes:
e (Can be phrased as a “random variable version”
E[X|Y = y]

* Linearity of expectation still applies here
ElaX + bY +c|Al =a E[X |A]+ b E|[Y |A] + ¢



Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable
and let events A, ..., A, partition the sample space. Then,

E[X] = ) E[X| 4] P(A)
=1

 Law of Total Expectation (random variable version). Let X be a
random variable and Y be a discrete random variable. Then,

E[X]= ) E[X|Y=y]-P(Y =)
y EQy



Agenda

e Joint Distributions

— Another LTE example
P a

— Conditional expectation and LTE for continuous RVs
* Covariance

* Tail Bounds
— Markov’s Inequality



Example — Computer Failures (a familiar example)

Suppose your computer operates in a sequence of steps, and that at each step i
your computer will fail with probability g (independently of other steps).

Let X be the number of steps it takes your computer to fail.
What is E[X]?

What kind of RV is X?



Recall - Flipping a biased coin until you see heads

e Biased coin: 4 ~q
(1-q)q
P(H)=q>0
P(T)=1—gq 1—q
* X =# of coin flips until first head l—gq (1-q)°q
PX=0)=q1—-q'" 1-gq
- . N - _Ni-1
E[X] = z i-PX=1)= z i-q(1—-q) Converges, so E[X] is finite
i=1 =1

Can calculate this directly ...
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Analysis - Flipping a biased coin until you see heads

E|X] = z i-g(1—q) =g z i(1—q)i~! Converges, so E|[X] is finite
=d i=1

So EX]=q[14+2(1—q@)+3(Q—q)?+ - +i(1—q)"1+]

q
gl A-@+2(1-q@)*+-+({-DA—-q@)"+-]

Then (1 — q)E[X]

Subtracting gives
qEX]=¢q[1+(1-q) +(1-q@)?*+ +(Q—q)' " +]
1 (0]
qIE[X]=qL_(1_q)]:1 sincefor0 <r < 1, ;r"=11r

Therefore E|X| = 1/q
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Same examples with the LTE

Suppose your computer operates in a sequence of steps, and that at each step i
your computer will fail with probability g (independently of other steps).

Let X be the number of steps it takes your computer to fail.
What is E[X]?

Let Y be the indicator random variable for the event of failure (heads) in step 1

Thenby LTE, E[X] = E[X|Y =1]-P(Y = 1) + E[X | Y = 0] - P(Y = 0)
=1-q+E[X|Y=0]-(1—-¢q)
=qg+ (1+E[X])-(1—q) since if Y = 0 experiment
starting at step 2 looks like
original experiment
Solving we get E[X]| = 1/q
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Conditional Expectation again...

Definition. Let X be a discrete random variable; then the conditional
- expectation of X given event A is e

E|X | A] = z x-P(X=x]|4)

Therefore for X and Y discrete random variables, the conditional
expectation of X givenY =y is

EX|Y=yl= ) x-PX=x[Y=y)= > x pay(xly)
x €Qx x €Qx
Px,y (X, y)
12467

where we define pxy(x|y) =PX =x|Y =y) =



Conditional Expectation — Discrete & Continuous

Pxy(X,y)
py (¥)

Discrete: Conditional PMF: pxy(x]y) =

Conditional Expectation: [E[X |V = y] = 2 x - pxy(x|y)

x €Qyx

fxy(x,y)
fr(y)

Continuous: Conditional PDF: fxjy(x|y) =

Conditional Expectation: [E[X |V = y] = f x - fxy(x|y) dx
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Law of Total Expectation - continuous

Law of Total Expectation (event version). Let X be a random variable
and let events A, ..., A, partition the sample space. Then,

E[X] = ) E[X | 4] P(4)
=1

Law of Total Expectation (random variable version). Let X and Y be
- continuous random variables. Then,

E[X] = f EIX|Y = y]- f(7) dy



. ] Jle™ x>0
Using LTE for Continuous RVs PDF for Exp(4) '5{ 0 w.
Expectationis 1/4

Suppose that we first choose Y ~ Exp(1/2) and then
X ~Exp(Y). WhatisE[X]?

fxiy(xly) =y e /Y

v is fixed here
00 /

E[X | Y = y] =f % - forp G2y} dx =j o g =

— 00

00)

BX = [ EXIY =y 50 dy = y-2ePdx= 2

— 00
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Reference Sheet (with continuous RVs)

Discrete Continuous
Joint PMF/PDF prr(.y) = PX = x,Y = y) fir(0,) # PE =xY = y)
. X ry
Joint CDF Fyy(x,y) = ZZ Pxy(t,s) Fyy(x,y) = f [ fxy(t,s)dsdt
t<x s<y = V-0
Normalization ZZ pyy(x,y) =1 f f froy(,y)dxdy = 1
Marginal *
PMFg/ s px(x) = z Pxy(X,y) fr(x) = f_ wfx,,,(x, v)dy
Expectation ElgQt, V)] = ) Z 9@ Pry®Y) | E[g(x,v)] = [ f 906, Y)fiy (6, y)dxdy
x y —00 v/ =00
Conditional Dy iy (x| y) = Pxy(X,y) (x| y) = fxy(x,y)
PME/PDF XY Py (¥) i fr ()
Conditional E[X | Y = - .
=yl =) xpx;y(x|y) = :f
e —— Z " BV =3)= | xfy(x]y)ds
Independence Vx, ¥, 0xy(x,¥) = px(X)py (¥) vx,y, fxy(x,¥) = fx () fy ()




Brain Break




Agenda

* Joint Distributions
— Another LTE example
— Conditional expectation and LTE for continuous RVs

e Covariance @

 Tail Bounds
— Markov’s Inequality
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Covariance: How correlated are X and Y?

Recall that if X and Y are independent, E[XY| = E|X] - E[Y]

Definition: The covariance of random variables X and Y,
Cov(X,Y) = E[XY] — E[X] - E[Y]

Unlike variance, covariance can be positive or negative. It has
has value 0 if the random variables are independent.

20



. Cov(X,Y) = E[XY] — E[X] - E[Y]
Two Covariance examples:

Suppose X ~ Bernoulli(p)

If random variable Y = X then
Cov(X,Y) = E[X?] — E[X]? = Var(X) = p(1 — p)

If random variable Z = —X then
Cov(X,Z) = [XZ] E[X] - E[Z]
= E[-X?] — E[X] - E[-X]
= —E[X?] + E[X]? = —Var(X) = —p(1 — p)
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Agenda

* Joint Distributions
— Another LTE example
— Conditional expectation and LTE for continuous RVs

e Covariance

 Tail Bounds —
— Markov’s Inequality
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Tail Bounds (Idea)

Bounding the probability that a random variable is far from its
mean. Usually statements of the form:

PX=a)<bhb
P(|X — E[X]| = a) < b

Useful tool when
* An approximation that is easy to compute is sufficient
* The process is too complex to analyze exactly

23



Markov’s Inequality

 Theorem. Let X be a random variable taking only non-negative values.

Then, forany t > 0,
5 E[X]

P(XZt)ST

(Alternative form) Forany k > 1,

_____________________________________________________________________________________________________________________________________________________________________

Incredibly simplistic — only requires that the random variable is non-negative and
only needs you to know expectation. You don’t need to know anything else about
the distribution of X.

24



| Theorem. Let X be a (discrete) random variable taking

Markov’s Inequality — Proof | only non-negative values. Then, forany ¢t > 0,

P(X > 1) < 22

_____________________________________________________________________________________

E[X] =Zx-P(X=x)

" = 0 becausex = 0
= Z x-P(X = x) whenever P(X = x) = 0
(X takes only non-negative
x=t values)
= z x-P(X =x)
x=t
> Z t-PX=%x) =t-P(X>t) Follows by re-arranging terms
x>t

25



. Theorem. Let X be a (continuous) random variable
Markov’s Inequallty — Proof Il . taking only non-negative values. Then, for any t > 0,

ELX]

PX>t) < p

_____________________________________________________________________________________

E[X] = fo x - fy(x) dx

0 t
:j x - fy(x) dx +j x - fy(x) dx
t 0

(0 0]

x - fx(x) dx

\Y

Jt
roo
Jt

\Y

t - fx(x)dx =t-jmfx(x)dx =t-P(X>t)
t

so P(X = t) < E[X]/t as before
26



Example - Geometric Random Variable

Let X be geometric RV with parameter p
PX=0)=0-p)p BX] =

““X is the number of times Alice needs to flip a biased coin until she sees heads, if
heads occurs with probability p?

What is the probability that X = 2E[X]| = 2/p?

Markov’s inequality: P(X = 2E[X]) <

N | =

27



Example P(X > k- E[X]) <

Suppose that the average number of ads you will see on a
website is 25. Give an upper bound on the probability of seeing
a website with 75 or more ads.

Poll: pollev.com/paulbeame028
a. 0<p<0.25

b 0.25<p<0.5

c. 0.5<p<0.75

'd. 0.75<7p

‘e. Unable to compute

28
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Example P(X > k- E[X]) <

Suppose that the average number of ads you will see on a
website is 25. Give an upper bound on the probability of seeing
a website with 20 or more ads.

Poll: pollev.com/paulbeame028
a. 0<p<0.25

b 0.25<p<0.5

c. 0.5<p<0.75

'd. 0.75<7p

‘e. Unable to compute

29

=l N



Example - Geometric Random Variable

Let X be geometric RV with parameter p

. 1
PX=0D)=00-p)'p E[X] =2

“Xis' Next time we will see that we can get better '€ s€es heads, if
. . . 1 probability p?
tail bounds using variance

What is the probability that X = 2E[X]| = 2/p?

Markov’s inequality: P(X = 2E[X]) <

N | =
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