CSE 312 Foundations of Computing II

Lecture 19: More Joint Distributions Tail Bounds part I

Midterm

- Scores released at 2:30pm after class
 - Breathe & relax!

Average: 72.37 Standard Deviation: 17.85 (Median: 77)

Scores	90+	80s	70s	60s	50s	< 50
# of students	21	44	36	21	13	20

- Too much reading/harder than intended
- Solutions available on Canvas Pages
- Regrade requests via e-mail only (to me) for major issues.
 *Average 76.43 for students answering ≥10 PollEv polls

Review Joint PMFs and Joint Range

Definition. Let *X* and *Y* be discrete random variables. The **Joint PMF** of *X* and *Y* is

$$p_{X,Y}(a,b) = P(X = a, Y = b)$$

Definition. The **joint range** of $p_{X,Y}$ is $\Omega_{X,Y} = \{(c,d) : p_{X,Y}(c,d) > 0\} \subseteq \Omega_X \times \Omega_Y$

Note that

$$\sum_{(s,t)\in\Omega_{X,Y}}p_{X,Y}(s,t)=1$$

3

Review Marginal PMF

Definition. Let *X* and *Y* be discrete random variables and $p_{X,Y}(a, b)$ their joint PMF. The marginal PMF of *X*

$$p_X(a) = \sum_{b \in \Omega_Y} p_{X,Y}(a,b)$$

Similarly, $p_Y(b) = \sum_{a \in \Omega_X} p_{X,Y}(a, b)$

Review Continuous distributions on $\mathbb{R} \times \mathbb{R}$

Definition. The joint probability density function (PDF) of continuous random variables *X* and *Y* is a function $f_{X,Y}$ defined on $\mathbb{R} \times \mathbb{R}$ such that

- $f_{X,Y}(x,y) \ge 0$ for all $x, y \in \mathbb{R}$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$

for $A \subseteq \mathbb{R} \times \mathbb{R}$ the probability that $(X, Y) \in A$ is $\iint_A f_{X,Y}(x, y) dxdy$

The (marginal) PDFs f_X and f_Y are given by

- $-f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}y$
- $-f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}x$

Review Conditional Expectation

Definition. Let *X* be a discrete random variable then the **conditional expectation** of *X* given event *A* is

$$\mathbb{E}[X \mid A] = \sum_{x \in \Omega_X} x \cdot P(X = x \mid A)$$

Notes:

• Can be phrased as a "random variable version"

 $\mathbb{E}[X|Y=y]$

• Linearity of expectation still applies here $\mathbb{E}[aX + bY + c \mid A] = a \mathbb{E}[X \mid A] + b \mathbb{E}[Y \mid A] + c$

Review Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable and let events A_1, \ldots, A_n partition the sample space. Then,

$$\mathbb{E}[X] = \sum_{i=1}^{N} \mathbb{E}[X \mid A_i] \cdot P(A_i)$$

Law of Total Expectation (random variable version). Let *X* be a random variable and *Y* be a discrete random variable. Then, $\mathbb{E}[X] = \sum_{y \in \Omega_Y} \mathbb{E}[X \mid Y = y] \cdot P(Y = y)$

Agenda

- Joint Distributions
 - Another LTE example
 - Conditional expectation and LTE for continuous RVs
- Covariance
- Tail Bounds
 - Markov's Inequality

Example – Computer Failures (a familiar example)

Suppose your computer operates in a sequence of steps, and that at each step *i* your computer will fail with probability *q* (independently of other steps). Let *X* be the number of steps it takes your computer to fail. What is $\mathbb{E}[X]$?

What kind of RV is *X*?

Recall – Flipping a biased coin until you see heads

Can calculate this directly ...

10

Analysis – Flipping a biased coin until you see heads

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} i \cdot q(1-q)^{i-1} = q \sum_{i=1}^{\infty} i(1-q)^{i-1} \quad \text{Converges, so } \mathbb{E}[X] \text{ is finite}$$
So $\mathbb{E}[X] = q [1+2(1-q)+3(1-q)^2 + \dots + i(1-q)^{i-1} + \dots]$
Then $(1-q)\mathbb{E}[X] = q[$ $(1-q)+2(1-q)^2 + \dots + (i-1)(1-q)^{i-1} + \dots]$
Subtracting gives
 $q \mathbb{E}[X] = q [1+(1-q) + (1-q)^2 + \dots + (1-q)^{i-1} + \dots]$
 $q \mathbb{E}[X] = q \left[\frac{1}{1-(1-q)}\right] = 1$ since for $0 < r < 1$, $\sum_{i=0}^{\infty} r^i = \frac{1}{1-r}$
Therefore $\mathbb{E}[X] = 1/q$

Same examples with the LTE

Suppose your computer operates in a sequence of steps, and that at each step *i* your computer will fail with probability *q* (independently of other steps). Let *X* be the number of steps it takes your computer to fail. What is $\mathbb{E}[X]$?

Let Y be the indicator random variable for the event of failure (heads) in step 1

```
Then by LTE, \mathbb{E}[X] = \mathbb{E}[X | Y = 1] \cdot P(Y = 1) + \mathbb{E}[X | Y = 0] \cdot P(Y = 0)
= 1 \cdot q + \mathbb{E}[X | Y = 0] \cdot (1 - q)
= q + (1 + \mathbb{E}[X]) \cdot (1 - q) since if Y = 0 experiment
starting at step 2 looks like
original experiment
```

Solving we get $\mathbb{E}[X] = 1/q$

Conditional Expectation again...

Definition. Let *X* be a discrete random variable; then the **conditional expectation** of *X* given event *A* is

$$\mathbb{E}[X \mid A] = \sum_{x \in \Omega_X} x \cdot P(X = x \mid A)$$

Therefore for X and Y discrete random variables, the conditional expectation of X given Y = y is

$$\mathbb{E}[X \mid Y = y] = \sum_{x \in \Omega_X} x \cdot P(X = x \mid Y = y) = \sum_{x \in \Omega_X} x \cdot p_{X|Y}(x|y)$$

where we **define** $p_{X|Y}(x|y) = P(X = x | Y = y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$

Conditional Expectation – Discrete & Continuous

Discrete: Conditional PMF:
$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

Conditional Expectation: $\mathbb{E}[X \mid Y = y] = \sum_{x \in \Omega_X} x \cdot p_{X|Y}(x|y)$

Continuous: Conditional PDF: $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$

Conditional Expectation: $\mathbb{E}[X \mid Y = y] = \int_{-\infty}^{\infty} x \cdot f_{X|Y}(x|y) dx$

Law of Total Expectation - continuous

Law of Total Expectation (event version). Let X be a random variable and let events $A_1, ..., A_n$ partition the sample space. Then,

$$\mathbb{E}[X] = \sum_{i=1}^{N} \mathbb{E}[X \mid A_i] \cdot P(A_i)$$

Law of Total Expectation (random variable version). Let *X* and *Y* be continuous random variables. Then, $\mathbb{E}[X] = \int_{-\infty}^{\infty} \mathbb{E}[X \mid Y = y] \cdot f_Y(y) \, dy$

PDF for $Exp(\lambda)$ is $\begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & 0.W. \end{cases}$ **Using LTE for Continuous RVs** Expectation is $1/\lambda$ Suppose that we first choose $Y \sim Exp(1/2)$ and then choose $X \sim Exp(Y)$. What is $\mathbb{E}[X]$? $f_{X|Y}(x|y) = y e^{-x/y}$ $\mathbb{E}[X \mid Y = y] = \int_{-\infty}^{\infty} x \cdot f_{X|Y}(x|y) \, dx = \int_{-\infty}^{\infty} x \cdot y \, e^{-x/y} \, dx = y$ $\mathbb{E}[X] = \int_{-\infty}^{\infty} \mathbb{E}[X \mid Y = y] f_Y(y) dy = \int_{-\infty}^{\infty} y \cdot 2 e^{-y/2} dx = 2$

Reference Sheet (with continuous RVs)

	Discrete	Continuous
Joint PMF/PDF	$p_{X,Y}(x,y) = P(X = x, Y = y)$	$f_{X,Y}(x,y) \neq P(X = x, Y = y)$
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \le x} \sum_{s \le y} p_{X,Y}(t,s)$	$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
Normalization	$\sum_{x}\sum_{y}p_{X,Y}(x,y)=1$	$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f_{X,Y}(x,y)dxdy=1$
Marginal PMF/PDF	$p_X(x) = \sum_{y} p_{X,Y}(x,y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
Expectation	$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$	$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$
Conditional PMF/PDF	$p_{X Y}(x y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$	$f_{X \mid Y}(x \mid y) = \frac{f_{X,Y}(x, y)}{f_Y(y)}$
Conditional	$E[X \mid Y = y] = \sum x p_{X \mid Y}(x \mid y)$	$E[X \mid Y = y] = \int_{-\infty}^{\infty} x f_{X+Y}(x \mid y) dx$
Expectation		$\int_{-\infty}^{\infty}$
Independence	$\forall x, y, p_{X,Y}(x, y) = p_X(x)p_Y(y)$	$\forall x, y, f_{X,Y}(x, y) = f_X(x)f_Y(y)$

Brain Break

Agenda

- Joint Distributions
 - Another LTE example
 - Conditional expectation and LTE for continuous RVs
- Covariance
- Tail Bounds
 - Markov's Inequality

Covariance: How correlated are *X* and *Y*?

Recall that if X and Y are independent, $\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Definition: The **covariance** of random variables *X* and *Y*, $Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Unlike variance, covariance can be positive or negative. It has has value 0 if the random variables are independent.

 $\operatorname{Cov}(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Two Covariance examples:

Suppose *X* ~ Bernoulli(*p*)

If random variable Y = X then $Cov(X, Y) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = Var(X) = p(1 - p)$

If random variable
$$Z = -X$$
 then
 $Cov(X, Z) = \mathbb{E}[XZ] - \mathbb{E}[X] \cdot \mathbb{E}[Z]$
 $= \mathbb{E}[-X^2] - \mathbb{E}[X] \cdot \mathbb{E}[-X]$
 $= -\mathbb{E}[X^2] + \mathbb{E}[X]^2 = -Var(X) = -p(1-p)$

Agenda

- Joint Distributions
 - Another LTE example
 - Conditional expectation and LTE for continuous RVs
- Covariance
- Tail Bounds
 - Markov's Inequality

Tail Bounds (Idea)

Bounding the probability that a random variable is far from its mean. Usually statements of the form:

 $P(X \ge a) \le b$ $P(|X - \mathbb{E}[X]| \ge a) \le b$

Useful tool when

- An approximation that is easy to compute is sufficient
- The process is too complex to analyze exactly

Markov's Inequality

Theorem. Let *X* be a random variable taking only non-negative values. Then, for any t > 0,

 $P(X \ge t) \le \frac{\mathbb{E}[X]}{t}.$

(Alternative form) For any $k \ge 1$, $P(X \ge k \cdot \mathbb{E}[X]) \le \frac{1}{k}$

Incredibly simplistic – only requires that the random variable is non-negative and only needs you to know <u>expectation</u>. You don't need to know **anything else** about the distribution of X.

Markov's Inequality – Proof I

 $x \ge t$

Theorem. Let *X* be a (discrete) random variable taking only non-negative values. Then, for any t > 0,

 $\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}.$

$$E[X] = \sum_{x} x \cdot P(X = x)$$

= $\sum_{x \ge t} x \cdot P(X = x) + \sum_{x < t} x \cdot P(X = x)$
 $\ge \sum_{x \ge t} x \cdot P(X = x)$
 $\ge \sum_{x \ge t} t \cdot P(X = x)$
 $\ge \sum_{x \ge t} t \cdot P(X = x) = t \cdot P(X \ge t)$

 ≥ 0 because $x \geq 0$ whenever $P(X = x) \geq 0$ (X takes only non-negative values)

Follows by re-arranging terms

. . .

Markov's Inequality – Proof II

Theorem. Let X be a (continuous) random variable taking only non-negative values. Then, for any t > 0,

 $\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}.$

$$\mathbb{E}[X] = \int_{0}^{\infty} x \cdot f_{X}(x) \, dx$$

$$= \int_{t}^{\infty} x \cdot f_{X}(x) \, dx + \int_{0}^{t} x \cdot f_{X}(x) \, dx$$

$$\ge \int_{t}^{\infty} x \cdot f_{X}(x) \, dx$$

$$\ge \int_{t}^{\infty} t \cdot f_{X}(x) \, dx = t \cdot \int_{t}^{\infty} f_{X}(x) \, dx = t \cdot P(X \ge t)$$

so $P(X \ge t) \le \mathbb{E}[X]/t$ as before

26

Example – Geometric Random Variable

Let *X* be geometric RV with parameter *p*

$$P(X = i) = (1 - p)^{i - 1} p$$
 $\mathbb{E}[X] = \frac{1}{p}$

"X is the number of times Alice needs to flip a biased coin until she sees heads, if heads occurs with probability p?

What is the probability that $X \ge 2\mathbb{E}[X] = 2/p$?

Markov's inequality: $P(X \ge 2\mathbb{E}[X]) \le \frac{1}{2}$

Example

$$P(X \ge k \cdot \mathbb{E}[X]) \le \frac{1}{k}$$

Suppose that the average number of ads you will see on a website is **25**. Give an upper bound on the probability of seeing a website with **75** or more ads.

 Poll: pollev.com/paulbeame028

 a. $0 \le p < 0.25$

 b. $0.25 \le p < 0.5$

 c. $0.5 \le p < 0.75$

 d. $0.75 \le p$

 e. Unable to compute

Example

$$P(X \ge k \cdot \mathbb{E}[X]) \le \frac{1}{k}$$

Suppose that the average number of ads you will see on a website is 25. Give an upper bound on the probability of seeing a website with 20 or more ads.

 Poll: pollev.com/paulbeame028

 a. $0 \le p < 0.25$

 b. $0.25 \le p < 0.5$

 c. $0.5 \le p < 0.75$

 d. $0.75 \le p$

 e. Unable to compute

Example – Geometric Random Variable

Let *X* be geometric RV with parameter *p*

$$P(X = i) = (1 - p)^{i - 1} p$$
 $\mathbb{E}[X] = \frac{1}{p}$

"X is Next time we will see that we can get better tail bounds using variance

e sees heads, if probability <mark>p</mark>?

What is the probability that $X \ge 2\mathbb{E}[X] = 2/p$?

Markov's inequality: $P(X \ge 2\mathbb{E}[X]) \le \frac{1}{2}$