
CSE 312

Foundations of Computing II

Lecture 19: More Joint Distributions
Tail Bounds part I
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Midterm

• Scores released at 2:30pm after class

– Breathe & relax!

Average: 72.37      Standard Deviation:  17.85    (Median:  77) 

• Too much reading/harder than intended

• Solutions available on Canvas Pages

• Regrade requests via e-mail only (to me) for major issues.
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Scores 90+ 80s 70s 60s 50s < 50

# of students 21 44 36 21 13 20

*Average 76.43 for students answering ≥10 PollEv polls



Review Joint PMFs and Joint Range
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Definition. Let � and � be discrete random variables. The Joint PMF  
of � and � is

��,�(�, 	) = � (� = �, � = 	)

Definition. The joint range of ��,� is

Ω�,� = �, � ∶ ��,� �, � > 0 ⊆ Ω� × Ω�

Note that

� ��,� �, � = 1
�

�,� ∈��, 



Review Marginal PMF
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Definition. Let � and � be discrete random variables and ��,� �, 	
their joint PMF. The marginal PMF  of �

��(�) = � ��,�(�, 	)
�

!∈� 

Similarly,  ��(	) = ∑ ��,�(�, 	)�#∈��



Review Continuous distributions on ℝ × ℝ
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Definition. The joint probability density function (PDF) of continuous 
random variables � and � is a function %�,� defined on ℝ × ℝ such that 

• %�,� &, ' ≥ 0 for all &, ' ∈ ℝ
• ) ) %�,� &, ' d& d' = 1+

,+
+

,+
for - ⊆ ℝ × ℝ the probability that �, � ∈ - is ∬ %�,� &, '  d&d'/
The  (marginal) PDFs %� and %� are given by

– %� & = ) %�,� &, '  d'+
,+

– %� ' = ) %�,� &, '  d&+
,+



Review Conditional Expectation
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Definition. Let � be a discrete random variable then the conditional 
expectation of � given event - is

0 �  -] = � & ⋅ � � = & -)
�

3  ∈ ��

Notes:
• Can be phrased as a “random variable version”0 �  � = ']

• Linearity of expectation still applies here0 �� + 	� + �  -] = � 0 �  -] + 	 0 �  -] + �



Review Law of Total Expectation
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Law of Total Expectation (event version). Let � be a random variable 
and let events -5, … , -7 partition the sample space. Then,

0[�] = � 0 �  -9 ⋅ � (-9)
7

9:5

Law of Total Expectation (random variable version). Let � be a 
random variable and � be a discrete random variable. Then,

0[�] = � 0 �  � = ' ⋅ � (� = ')
�

; ∈� 



Agenda

• Joint Distributions

– Another LTE example

– Conditional expectation and LTE for continuous RVs

• Covariance

• Tail Bounds

– Markov’s Inequality
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Example – Computer Failures (a familiar example)

Suppose your computer operates in a sequence of steps, and that at each step <
your computer will fail with probability = (independently of other steps). 

Let � be the number of steps it takes your computer to fail. 

What is 0[�]?

What kind of RV is �?
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Recall – Flipping a biased coin until you see heads

• Biased coin:

� > = = > 0
�(?) = 1 − =

• � = # of coin flips until first head
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=
1 − =

=
1 − = =

1 − = =
1 − = …

1 − = A=
1 − = B=

1 − = ==

0 � = � < ⋅ � � = < = � < ⋅ = 1 − = 9,5
+

9:5
 

+

9:5 Converges, so 0 � is finite

Can calculate this directly …

�(� = <) = = 1 − = 9,5



Analysis – Flipping a biased coin until you see heads
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0 � = � < ⋅ = 1 − = 9,5
+

9:5
= = � < 1 − = 9,5

+

9:5
Converges, so 0 � is finite

0 � = = [1 + 2 1 − = + 3 1 − = A + ⋯    + < 1 − = 9,5 + ⋯ ]
1 − = 0 � = =[        1 − = + 2 1 − = A + ⋯ + (< − 1) 1 − = 9,5 + ⋯ ]

So

Subtracting gives

Then

= 0 � = =[ 1 + 1 − =  + 1 − = A + ⋯    + 1 − = 9,5 + ⋯ ]
= 0 � = = 1

1 − 1 − = = 1 since for 0 < G < 1, � HI = J
J − H

+

I:K

Therefore  0 � = 1/=



Same examples with the LTE

Suppose your computer operates in a sequence of steps, and that at each step <
your computer will fail with probability = (independently of other steps). 

Let � be the number of steps it takes your computer to fail. 

What is 0[�]?
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Let � be the indicator random variable for the event of failure (heads) in step 1
Then by LTE,  0 � = 0 �  � = 1] ⋅ � � = 1 + 0 �  � = 0] ⋅ � � = 0= 1 ⋅ = + 0 �  � = 0] ⋅ 1 − == = + 1 + 0 � ⋅ 1 − = since if � = 0 experiment  

starting at step 2 looks like   
original experiment

Solving we get 0 � = 1/=



Conditional Expectation again…
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Definition. Let � be a discrete random variable; then the conditional 
expectation of � given event - is

0 �  -] = � & ⋅ � � = & -)
�

3  ∈ ��
Therefore for � and � discrete random variables, the conditional 
expectation of � given � = ' is

0 �  � = '] = � & ⋅ � � = & � = ')
�

3  ∈ ��
= � & ⋅ ��,�(&|')

�

3  ∈ ��

��|� &|' = � � = &  � = ') = ��,�(&, ')
��(')where we define

= � & ⋅ ��|�(&|')
�

3  ∈ ��



Conditional Expectation – Discrete & Continuous
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��|� &|' = ��,�(&, ')
��(')Discrete: Conditional PMF:

Continuous: Conditional PDF: %�|� &|' = %�,�(&, ')
%�(')

Conditional Expectation: 0 �  � = '] = � & ⋅ ��|�(&|')
�

3  ∈ ��

Conditional Expectation: 0 �  � = '] = N & ⋅ %�|� & '  �&  +
,+



Law of Total Expectation - continuous
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Law of Total Expectation (event version). Let � be a random variable 
and let events -5, … , -7 partition the sample space. Then,

0[�] = � 0 �  -9 ⋅ � (-9)
7

9:5

Law of Total Expectation (random variable version). Let � and � be 
continuous random variables. Then,

0[�] = N 0 �  � = ' ⋅ %� '   �'+
,+



Using LTE for Continuous RVs

Suppose that we first choose � ∼ P&�(1/2) and then choose � ∼ P&� � . What is 0 � ?

%�|� &|' = ' R,3/;
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PDF for P&� S  is TSR,U3 & ≥ 00 o. w.
Expectation is 1/S

0 �  � = '] = N & ⋅ %�|� & '  �& = N & ⋅ ' R,3/;�&+
,+

+
,+

' is fixed here

0[�] = N 0 �  � = '] %�(') �' = N ' ⋅ 2 R,;/A�& =   2+
,+

+
,+

= '



Reference Sheet (with continuous RVs)
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Brain Break



Agenda

• Joint Distributions

– Another LTE example

– Conditional expectation and LTE for continuous RVs

• Covariance

• Tail Bounds

– Markov’s Inequality

19



Covariance:  How correlated are � and �? 

Recall that if � and � are independent, 0 �� = 0 � ⋅ 0[�]
Definition:  The covariance of random variables � and �,Cov �, � = 0 �� − 0 � ⋅ 0[�]
Unlike variance, covariance can be positive or negative.  It has 
has value 0 if the random variables are independent.
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Two Covariance examples:
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Cov �, � = 0 �� − 0 � ⋅ 0[�]

Suppose � ∼ Bernoulli(�)
If random variable � = � thenCov �, � = 0 �A − 0 � A = Var � = �(1 − �)
If random variable c = −� thenCov �, c = 0 �c − 0 � ⋅ 0 c= 0 −�A − 0 � ⋅ 0 −�= −0 �A + 0 � A = −Var � = −�(1 − �)



Agenda

• Joint Distributions

– Another LTE example

– Conditional expectation and LTE for continuous RVs

• Covariance

• Tail Bounds

– Markov’s Inequality
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Tail Bounds (Idea)

Bounding the probability that a random variable is far from its 
mean. Usually statements of the form:

� � ≥ � ≤ 	� |� − 0 � | ≥ � ≤ 	
Useful tool when

• An approximation that is easy to compute is sufficient

• The process is too complex to analyze exactly
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Markov’s Inequality 
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Theorem. Let � be a random variable taking only non-negative values. 
Then, for any � > 0,

� � ≥ � ≤ 0[�]
� . 

(Alternative form)  For any e ≥ 1 ,

� � ≥ e ⋅ 0 � ≤ 5
f

Incredibly simplistic – only requires that the random variable is non-negative and 
only needs you to know expectation. You don’t need to know anything else about 
the distribution of �.



Markov’s Inequality – Proof I  
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Theorem. Let � be a (discrete) random variable taking 
only non-negative values. Then, for any � > 0,

ℙ � ≥ � ≤ 0[�]
� . 

0[�] = � & ⋅ �(� = &)
�

3
= � & ⋅ �(� = &)

�

3h�
+ � & ⋅ �(� = &)

�

3i�
≥ � & ⋅ �(� = &)

�

3h�
≥ � � ⋅ �(� = &)

�

3h�
= � ⋅ �(� ≥ �)

≥ 0 because & ≥ 0
whenever � � = & ≥ 0
(� takes only non-negative 
values)  

Follows by re-arranging terms 
… 



Markov’s Inequality – Proof II  
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Theorem. Let � be a (continuous) random variable 
taking only non-negative values. Then, for any � > 0,

ℙ � ≥ � ≤ 0[�]
� . 

0[�] = N & ⋅ %� &  d&+
j

= N & ⋅ %� &  d& +
�

+ N & ⋅ %� &  d&�
j

≥ N & ⋅ %� &  d& +
�

≥ N � ⋅ %� &  d& +
�

= � ⋅ N %� &  d& +
�

= � ⋅ �(� ≥ �)
so  � � ≥ � ≤ 0[�]/� as before



Example – Geometric Random Variable

Let � be geometric RV with parameter �
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� � = < = 1 − � 9,5� 0[�] = 1
�

“� is the number of times Alice needs to flip a biased coin until she sees heads, if 

heads occurs with probability �?

What is the probability that � ≥ 20[�] = 2/�? 

Markov’s inequality: � � ≥ 20[�] ≤ 5
A



Example

Suppose that the average number of ads you will see on a 
website is 25. Give an upper bound on the probability of seeing 
a website with 75 or more ads. 
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Poll:  pollev.com/paulbeame028a. 0 ≤ � < 0.25b. 0.25 ≤ � < 0.5c. 0.5 ≤ � < 0.75d. 0.75 ≤ �e. Unable to compute

� � ≥ e ⋅ 0 � ≤ 1
e



� � ≥ e ⋅ 0 � ≤ 1
eExample

Suppose that the average number of ads you will see on a 
website is 25. Give an upper bound on the probability of seeing 
a website with 20 or more ads. 
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Poll:  pollev.com/paulbeame028a. 0 ≤ � < 0.25b. 0.25 ≤ � < 0.5c. 0.5 ≤ � < 0.75d. 0.75 ≤ �e. Unable to compute



Example – Geometric Random Variable

Let � be geometric RV with parameter �
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� � = < = 1 − � 9,5� 0[�] = 1
�

“� is the number of times Alice needs to flip a biased coin until she sees heads, if 

heads occurs with probability �?

What is the probability that � ≥ 20[�] = 2/�? 

Markov’s inequality: � � ≥ 20[�] ≤ 5
A

Next time we will see that we can get better 
tail bounds using variance


