CSE 312
Foundations of Computing i

Lecture 22: Maximum Likelihood Estimation (MLE)



Agenda

* |dea: Estimation @
* Maximum Likelihood Estimation (example: mystery coin)
* Continuous MLE



Probability vs Statistics

Probability

Given model, predict |:> P(THHTHH)
data

Statistics

Given data, predict <:| THHTHH

model




Formalizing Polls

We assume that poll answers X3, ..., X,, ~ Ber(p) i.i.d. for unknown p

Goal: Estimate p

We did this by computing p = - t X

n



More generally ...

In estimation we....

* Assume: we know the type of the random variable that we
are observing independent samples from
— We just don’t know the parameters, e.g.
* the bias p of a random coin Bernoulli(p)

e The arrival rate A for the Poisson(4) or Exponential(A)
* The mean p and variance ¢ of a normal NV'(u, o)

* Goal: find the “best” parameters to fit the data



Notation - Parametric Model (discrete case)

Definition. A (parametric) model is a family of distributions
indexed by a parameter 6, described by a two-argument function

P(x; 8) = prob. of outcome x when distribution has parameter 6

[i.e., every O defines a different distribution )., P(x;8) = 1]

Examples

D x =1

e “Bernoullis”: P(x;0 =p) = {1 - x=0

e “Geometrics”: P(i;0 =p) =1 —p)""'p fori €N



Statistics: Parameter Estimation - Workflow

Parameter
estimalte
Independent )
¥
Distribution samples Estimation A
— —> . — 0
P(x;0) X1, ., Xy, Algorithm
from P(x; 0)

6 = unknown parameter

Example: coin flip distribution with unknown 6 = probability of heads

Observation: HTTHHHTHTHTTTTHTHTTTTTHT

Goal: Estimate 6



Example

Suppose we have a mystery coin with some probability p of coming up heads. We
flip the coin 8 times, independent of other flips, and see the following sequence
flips

TTHTHTTH

Given this data, what would you estimate p is?

' Poll: pollev.com/paulbeame028

a. 1/2
'b. 5/8
'c. 3/8
d. 1/4



Agenda

* |dea: Estimation
* Maximum Likelihood Estimation (example: mystery coin) @
* Continuous MLE



Likelihood

Say we see outcome HHTHH.

You tell me your best guess
about the value of the unknown
parameter 6 (a.k.a. p)is 4/5. Is
there some way that you can
argue “objectively” that this is
the best estimate?
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Likelihood

Say we see outcome HHTHH.

L(HHTHH | 8) = 8*(1 — )

Probability of observing the
outcome HHTHH if 6 = prob.
of heads.

For a fixed outcome HHTHH ,
this is a function of 6.

Max Prob of seeing HHTHH

l

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Likelihood of Different Observations (Discrete case)

 Definition. The likelihood of independent observations xy, ..., x,, is

n
L(X1, ., x| 0) = HP(xl-; 0)
i=1

___________________________________________________________________________________________________________________________________________________________________

Maximum Likelihood Estimation (MLE). Given data x4, ...., x,,, find
O suchthat L(xq, ..., x, | 0) is maximized!

0 = argmax L(xq,....,x,| 6)

___________________________________________________________________________________________________________________________________________________________________

dlnL(Xq, ..., Xy, | O
=Oor n (1 n| )
06 00 12




Likelihood vs. Probability

* Fixed 6: probability [['_, P(x;; ) that dataset x, ..., x,, is
sampled by distribution with parameter 6

— A function of x4, ..., x,

* Fixed x4, ..., x,,: likelihood L(x4, ..., x,,| 6) that parameter 6
explains dataset x4, ..., x,,.
— A function of 6

These notions are the same number if we fix both x4, ..., x,
and 60, but different role/interpretation
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Example - Coin Flips

Observe: Coin-flip outcomes x4, ..., x,,, with ny heads, n tails

—le,ny tnr=n Goal: estimate 0 = prob. heads.

Ly, ., X,| 6) = 07 (1 — )77

0
25 L0t X ) =227

While it is possible to compute this derivative, it’s not always
nice since we are working with products.
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Log-Likelihood

We can save some work if we use the log-likelihood instead of the likelihood
directly.

Definition. The log-likelihood of independent observations
X1y ey Xy IS

n n
In L(xq, ..., x| 0) = lnl_[P(xi; 0) = z InP(x;;0)
i=1 =1

Useful log properties
In(ab) = In(a) + In(b)
In(a/b) = In(a) — In(b)

In(a?) = b - In(a) s



Example - Coin Flips

Observe: Coin-flip outcomes x4, ..., x,,, with ny heads, n tails

—ie,ny+nr=n Goal: estimate 0 = prob. heads.
L(X1, .., xy| 0) =0™ (1 —0)"T

In L(x1, ..., x| 8) =nyInb + npln(l — 0)

1 1
_lnL(xl;----,xnle) :nH'_—nT' - ; ____________ ; ________________
o0 0 =6 ~ Solving gives
A 0 ! A nH
Want value 6 of @ s.t. %ln L(x{, ..., x| 0) = | H = —
SoweneednH-i—nT-;:() ————————————— e
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General Recipe

1. Input Given n i.i.d. samples x4, ..., x,, from parametric model with
parameter 0.

2. Likelihood Define your likelihood L(x4, ...., x,,| 8).
— For discrete L(xX1, e, xn] 0) =111, P(x;; 0)
3. Log Compute In L(x4, ....,x,| 0)

4. Differentiate Compute %ln L(xX1,....,X| 0)
5. Solve for A by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify itis a
maximum, but we won’t ask you to do that in CSE 312.
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Brain Break
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Agenda

* |dea: Estimation
* Maximum Likelihood Estimation (example: mystery coin)
* Continuous VMLE @
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The Continuous Case

Given n (independent) samples x4, ..., x,, from (continuous)
parametric model f (x;; 8) which is now a family of densities

Density function! (Why?)
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Why density?

* Density # probability, but:

— For maximizing likelihood, we really only care about relative
likelihoods, and density captures that

— has desired property that likelihood increases with better fit to the
model
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n samples x4, ..., x,, € R from Gaussian NV (u, 1). Most likely u?

[i.e., we are given the promise that the variance is 1]
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n samples x4, ..., x,, € R from Gaussian NV (u, 1). Most likely u?

u=0?

Unlikely ...
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n samples x4, ..., x,, € R from Gaussian NV (u, 1). Most likely u?

u =37

Better, but
optimal?
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Example - Gaussian Parameters

Normal outcomes x4, ..., x,,, known variance o = 1 but
unknown mean u

Goal: estimate 6 = mean

Next tijj‘f" In other words, MLE is the
f=2% | sample mean of the data.
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General Recipe

1. Input Given n i.i.d. samples x4, ..., x,, from parametric model with
parameter 6.
2. Likelihood Define your likelihood L(x1, ...., x,| 8).
— For discrete L(x1, %] 0) =112, P(x;;0)
— For continuous  L(xq, ..., x,| 8) =1L, f(x;;0)
3. Log Compute In L(x4, ....,x,| 8)
4. Differentiate Compute % InL(xq,....,x,| 0)

5. Solve for by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum,
but we won’t ask you to do that in CSE 312.



