
CSE 312

Foundations of Computing II

Lecture 22: Maximum Likelihood Estimation (MLE)
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Agenda

• Idea: Estimation

• Maximum Likelihood Estimation (example: mystery coin)

• Continuous MLE
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Recap Probability vs Statistics
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Probability
Given model, predict 

data 
Ber � = 0.5 	(������)

Statistics
Given data, predict 

model 
������Ber � =? ?



Recap Formalizing Polls
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We assume that poll answers ��, … , �� ~ Ber(�) i.i.d. for unknown �
Goal: Estimate �
We did this by computing  �̂ = �

� ∑ ������



Recap More generally …

In estimation we…. 

• Assume: we know the type of the random variable that we 
are observing independent samples from

– We just don’t know the parameters, e.g.

• the bias � of a random coin Bernoulli(�)
• The arrival rate � for the Poisson(�) or Exponential(�)
• The mean ' and variance ( of a normal )(', ()

• Goal: find the “best” parameters to fit the data
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Notation – Parametric Model (discrete case)

Definition. A (parametric) model is a family of distributions 
indexed by a parameter *, described by a two-argument function

	 +; * = prob. of outcome + when distribution has parameter *

Examples

• “Bernoullis”: 	 +; * = � = -�             + = 11 − �     + = 0
• “Geometrics”: 	 0; * = � = 1 − � �1�� for 0 ∈ ℕ

6

[i.e., every * defines a different distribution ∑ 	 +; * = 145 ] 



Statistics: Parameter Estimation – Workflow
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Distribution	(+; *)
Independent 
samples ��, … , ��
from 	(+; *)

Estimation

Algorithm
*6

Parameter 
estimate

* = unknown parameter

Example: coin flip distribution with unknown * = probability of heads  

Observation:  ������������������������
Goal: Estimate *



Example

Suppose we have a mystery coin with some probability � of coming up heads. We 
flip the coin 8 times, independent of other flips, and see the following sequence 
flips

��������
Given this data, what would you estimate � is?
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Poll: pollev.com/paulbeame028 
a. 1/2
b. 5/8
c. 3/8
d. 1/4



Agenda

• Idea: Estimation

• Maximum Likelihood Estimation (example: mystery coin)

• Continuous MLE
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Likelihood
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You tell me your best guess 
about the value of the unknown 
parameter * (a.k.a. �) is 4/5. Is 
there some way that you can 
argue “objectively” that this is 
the best estimate?

Say we see outcome �����. 



Likelihood
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ℒ ����� | * = *>(1 − *)
Probability of observing the 
outcome ����� if * = prob. 
of heads. 

For a fixed outcome ����� , 
this is a function of *. 

Say we see outcome �����. 
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Likelihood of Different Observations
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Definition. The likelihood of independent observations +�, … . , +� is
ℒ +�, … . , +�  * = ? 	(+�; *)

�

���

(Discrete case)

Maximum Likelihood Estimation (MLE). Given data +�, … . , +�, find 

*6 such that  ℒ +�, … . , +�  *6 is maximized!

*6 =  argmaxB  ℒ +�, … . , +�  *
Usually: Solve 

Cℒ +�, … . , +�  *
CB = 0 or 

C DE ℒ +�, … . , +�  *
CB = 0 [+check it’s a max!]   



Likelihood vs. Probability

• Fixed *: probability ∏ 	(+�; *)����  that dataset +�, … , +� is 
sampled by distribution with parameter *
– A function of +�, … , +�

• Fixed +�, … , +�: likelihood ℒ +�, … , +�  *) that parameter *
explains dataset +�, … , +�.

– A function of *
These notions are the same number if we fix both +�, … , +�
and *, but different role/interpretation 
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Example – Coin Flips

Observe: Coin-flip outcomes +�, … , +�, with GH heads, GI tails

– i.e., GH + GI = G
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K
K* ℒ +�, … . , +�  * = ? ? ?

Goal: estimate * = prob. heads. 

While it is possible to compute this derivative, it’s not always 
nice since we are working with products.

ℒ +�, … . , +�  * = *�L  1 − * �M



Log-Likelihood

We can save some work if we use the log-likelihood instead of the likelihood 
directly.

Useful log properties ln NO = ln N + ln Oln N/O = ln N − ln (O) 
ln NP = O ⋅ ln(N)
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Definition. The log-likelihood of independent observations +�, … . , +� is
ln ℒ +�, … , +�  *) = ln ? 	(+�; *)

�

���
= R ln 	(+�; *)

�

���



Example – Coin Flips

Observe: Coin-flip outcomes +�, … , +�, with GH heads, GI tails

– i.e., GH + GI = G
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ℒ +�, … . , +�  * = *�L  1 − * �M

Goal: estimate * = prob. heads. 

ln ℒ +�, … . , +�  * = GH ln * + GI ln(1 − *)
K

K* ln ℒ +�, … . , +�  * = GH ⋅ 1
* − GI ⋅ 1

1 − *
Want value *6 of * s.t.

C
CB ln ℒ +�, … . , +�  * = 0 

So we need GH ⋅ �
BS − GI ⋅ �

�1BS = 0

Solving gives 

*6 = �L
�



General Recipe

1. Input Given G i.i.d. samples +�, … , +� from parametric model with 
parameter *.
2. Likelihood Define your likelihood ℒ +�, … . , +�  * .

– For discrete ℒ +�, … . , +�  * = ∏ 	 +�  ; *����
3. Log Compute ln ℒ +�, … . , +�  *
4. Differentiate Compute 

C
CB ln ℒ +�, … . , +�  *

5. Solve for *T by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a 
maximum, but we won’t ask you to do that in CSE 312.
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Brain Break
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Agenda

• Idea: Estimation

• Maximum Likelihood Estimation (example: mystery coin)

• Continuous MLE
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The Continuous Case

Given G (independent) samples +�, … , +� from (continuous) 
parametric model U +�; * which is now a family of densities
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Definition. The likelihood of independent observations +�, … . , +� is
ℒ +�, … . , +�  * = ? U(+�; *)

�

���

Density function! (Why?)



Why density?

• Density ≠ probability, but:

– For maximizing likelihood, we really only care about relative 
likelihoods, and density captures that

– has desired property that likelihood increases with better fit to the 
model
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0−1−2−3−4 1 2 3 4 5 6

G samples +�, … , +� ∈ ℝ from Gaussian )(', 1). Most likely '?

[i.e., we are given the promise that the variance is 1]
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0−1−2−3−4 1 2 3 4 5 6

G samples +�, … , +� ∈ ℝ from Gaussian )(', 1). Most likely '?

' = 0?

Unlikely …
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0−1−2−3−4 1 2 3 4 5 6

G samples +�, … , +� ∈ ℝ from Gaussian )(', 1). Most likely '?

' = 3?

Better, but 
optimal? 



Example – Gaussian Parameters

Normal outcomes +�, … , +�, known variance (Y = 1 but 
unknown mean '
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Goal: estimate * = mean

Next time: 

*6 = ∑ 5Z[Z�
In other words, MLE is the 
sample mean of the data.



General Recipe

1. Input Given G i.i.d. samples +�, … , +� from parametric model with 
parameter *.

2. Likelihood Define your likelihood ℒ +�, … . , +�  * .
– For discrete ℒ +�, … . , +�  * = ∏ 	 +�  ; *����
– For continuous ℒ +�, … . , +�  * = ∏ U +�  ; *����

3. Log Compute ln ℒ +�, … . , +�  *
4. Differentiate Compute 

C
CB ln ℒ +�, … . , +�  *

5. Solve for *6 by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, 
but we won’t ask you to do that in CSE 312.
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