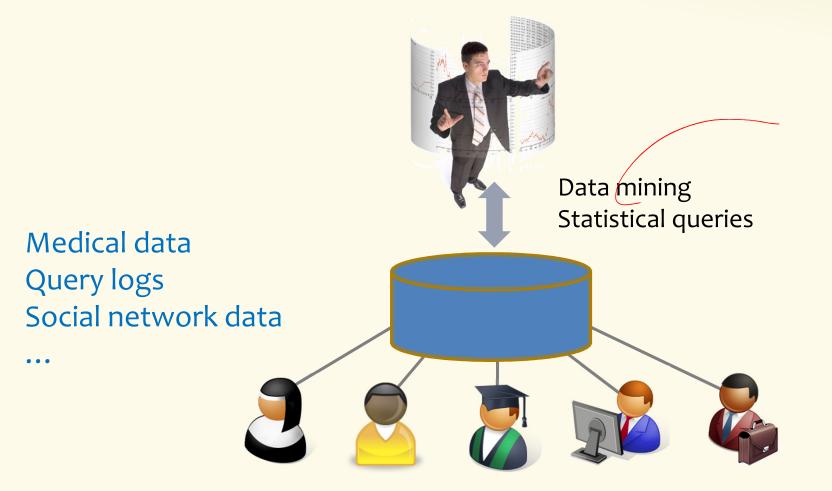
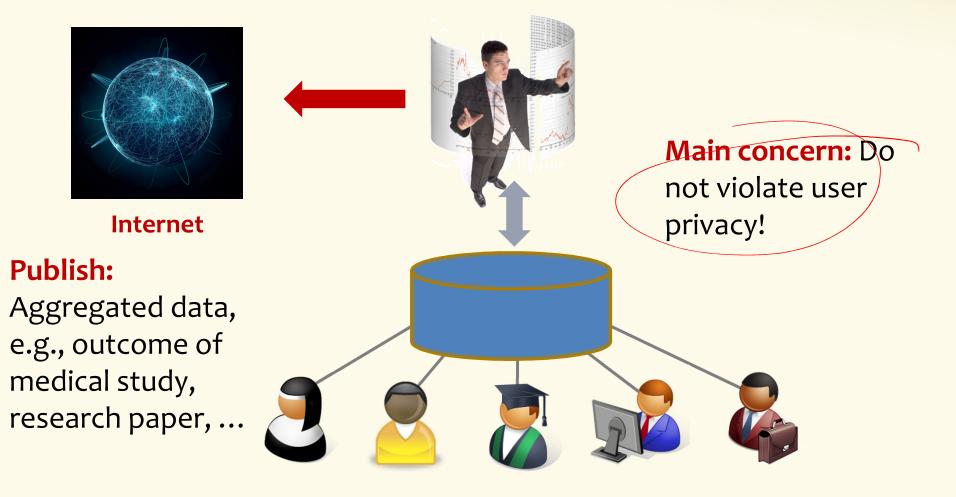
CSE 312 Foundations of Computing II

Lecture 26: Differential Privacy

Setting



Setting – Data Release



[Sweeney '00]

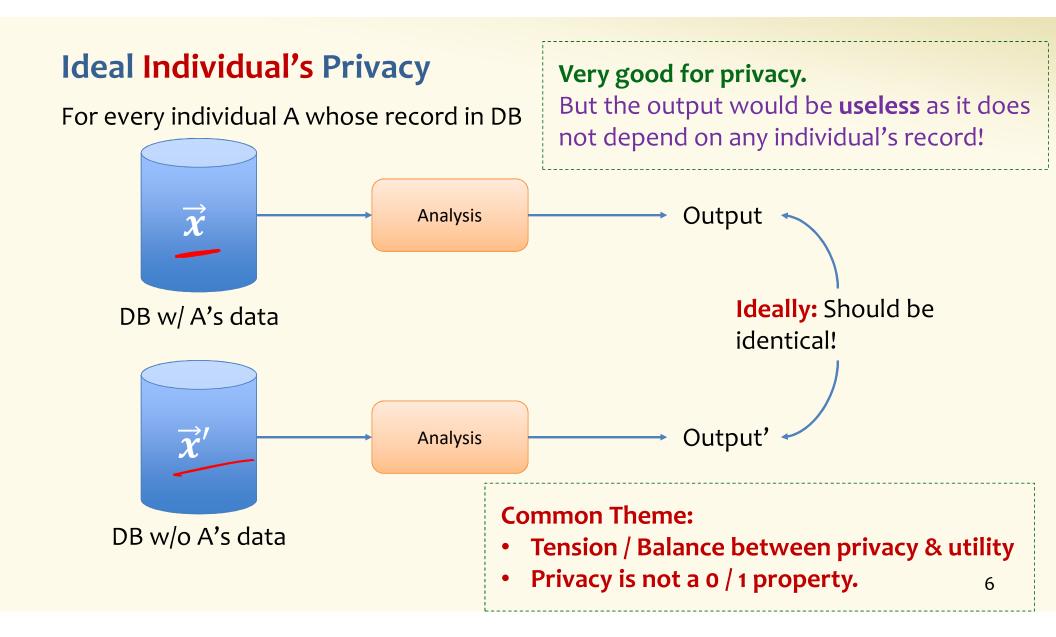
Example – Linkage Attack

- The Commonwealth of Massachusetts Group Insurance Commission (GIC) releases 135,000 records of patient encounters, each with 100 attributes
 - <u>Relevant attributes removed</u>, but ZIP, birth date, gender available
 - Considered "safe" practice
- Public voter registration record \ "Linkage"
 Contain, among others, name, address, ZIP, birth date, gender
- Allowed identification of medical records of William Weld, governor of MA at that time
 - He was the only man in his zip code with his birth date ...

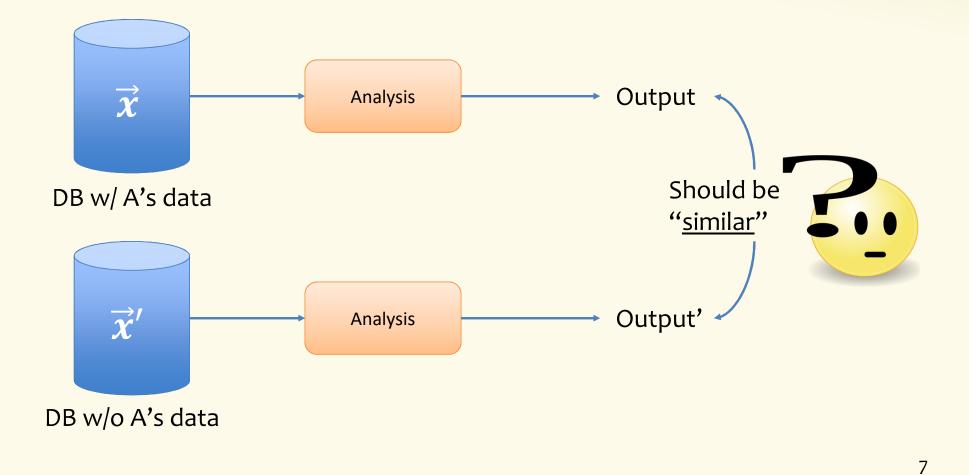
+More attacks! (cf. Netflix grand prize challenge!)

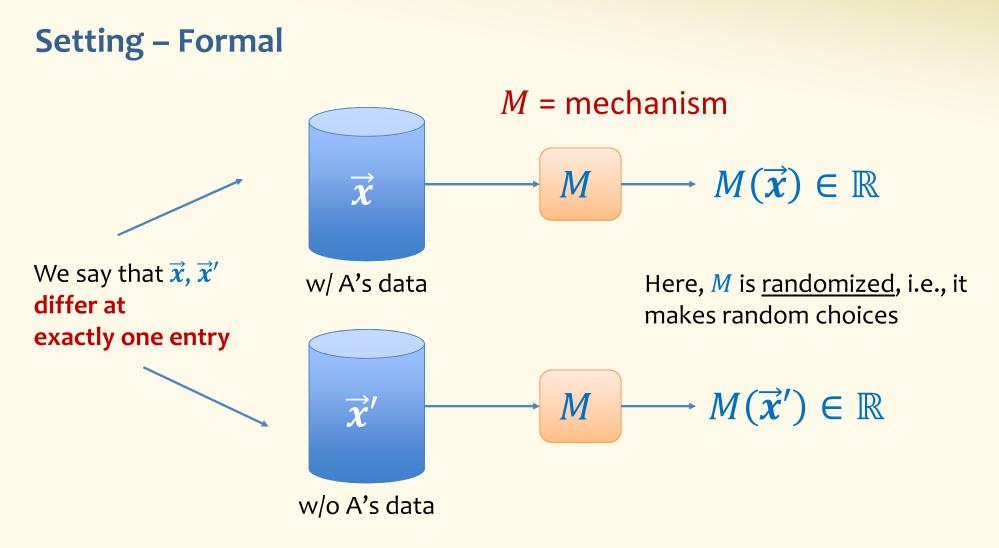
One way out? Differential Privacy

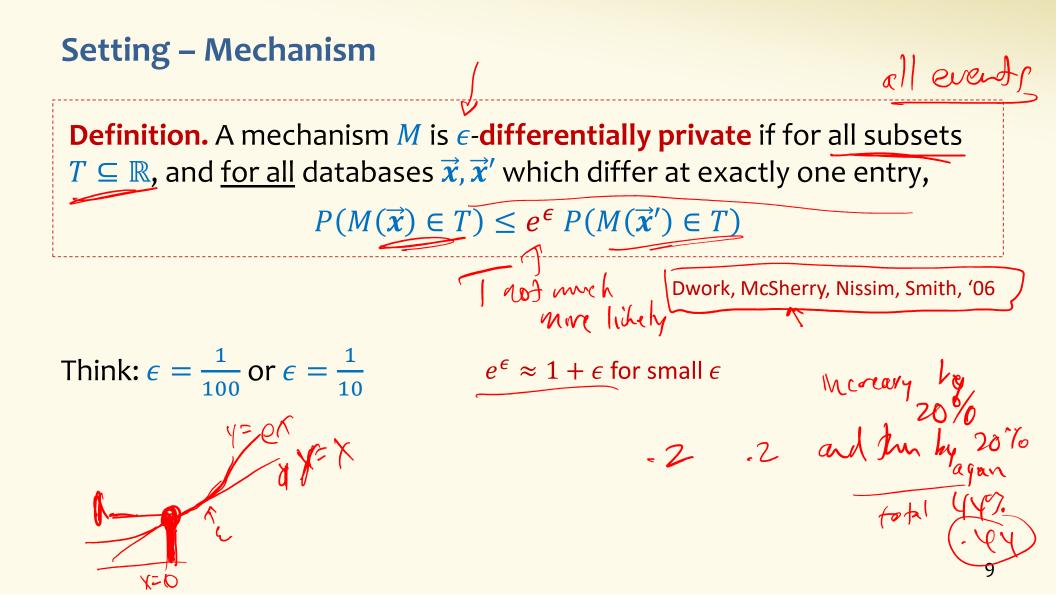
- A **formal definition** of privacy
 - Satisfied in systems deployed by Google, Uber, Apple, ...
- Used by 2020 census
- Idea: Any information-related risk to a person should not change significantly as a result of that person's information being included, or not, in the analysis.
 - Even with side information!

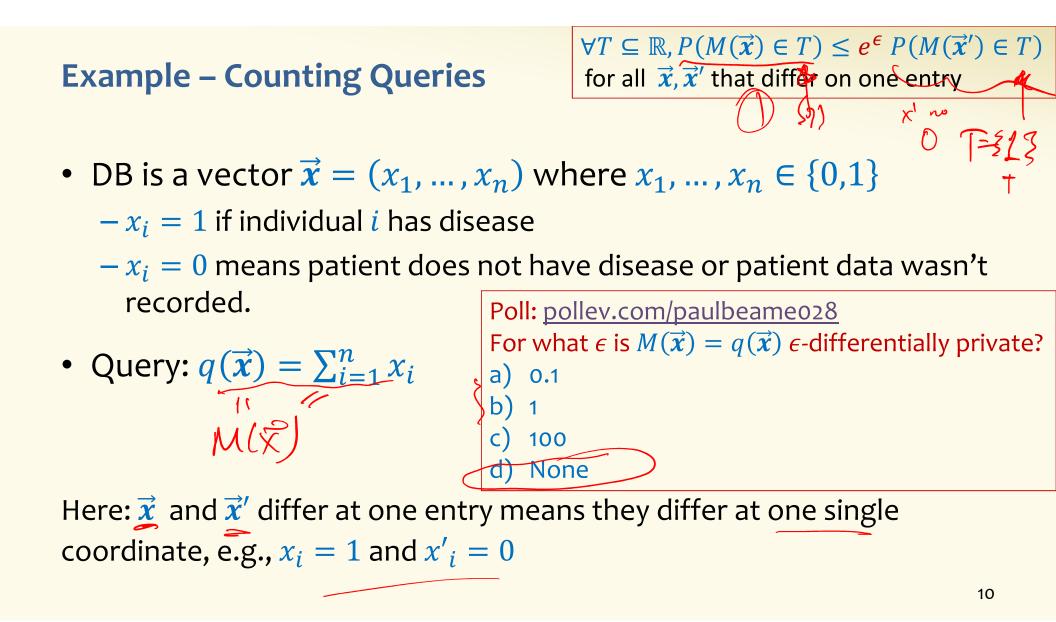


More Realistic Privacy Goal







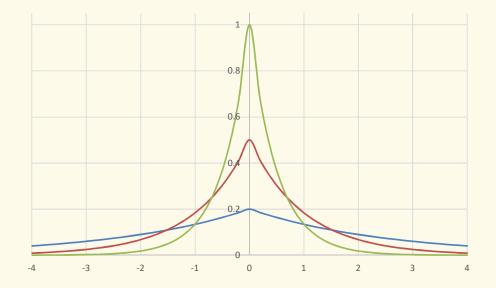


A solution – Laplacian Noise

Mechanism *M* taking input $\vec{x} = (x_1, ..., x_n)$:

• Return $M(\vec{x}) = \sum_{i=1}^{n} x_i + Y_i$ where Y follows a Laplace distribution with parameter ϵ

"Laplacian mechanism with parameter ϵ "



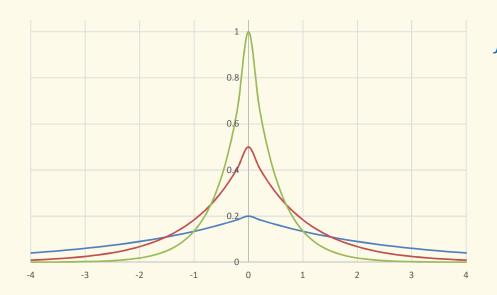
$$f_Y(y) = \frac{\epsilon}{2} e^{-\epsilon|y|}$$
$$\mathbb{E}[Y] = 0$$
$$Var(Y) = \frac{2}{\epsilon^2}$$

A solution – Laplacian Noise

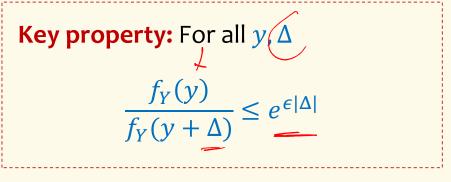
Mechanism *M* taking input $\vec{x} = (x_1, ..., x_n)$:

• Return $M(\vec{x}) = \sum_{i=1}^{n} x_i + Y$ where Y follows a Laplace distribution with parameter ϵ

"Laplacian mechanism with parameter ϵ "

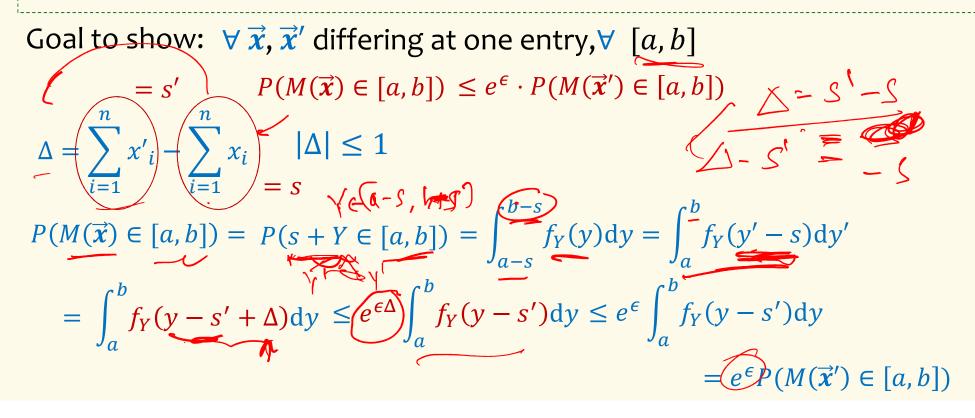


$$f_Y(y) = \frac{\epsilon}{2} e^{-\epsilon|y|}$$



Laplacian Mechanism – Privacy

Theorem. The Laplacian Mechanism with parameter ϵ satisfies ϵ -differential privacy



How Accurate is Laplacian Mechanism?

Let's look at $\sum_{i=1}^{n} x_i + Y$

• $\mathbb{E}\left[\sum_{i=1}^{n} x_i + Y\right] = \sum_{i=1}^{n} x_i + \mathbb{E}[Y] = \sum_{i=1}^{n} x_i$

•
$$\operatorname{Var}(\sum_{i=1}^{n} x_i + Y) = \operatorname{Var}(Y) = \frac{2}{\epsilon^2}$$

This is accurate enough for large enough ϵ !

Differential Privacy – What else can we compute?

- **Statistics:** <u>counts</u>, mean, median, histograms, boxplots, etc.
- Machine learning: classification, regression, clustering, distribution learning, etc.
- •••

Differential Privacy – Nice Properties

• **Group privacy:** If *M* is ϵ -differentially private, then for all $T \subseteq \mathbb{R}$, and for all databases \vec{x}, \vec{x}' which differ at (at most) *k* entries,

$P(M(\vec{x}) \in T) \le e^{k\epsilon} P(M(\vec{x}') \in T)$

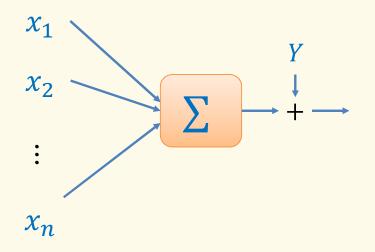
Composition: If we apply two *ϵ*-DP mechanisms to data, combined output is 2*ϵ*-DP.

- How much can we allow ϵ to grow? (So-called "privacy budget.")

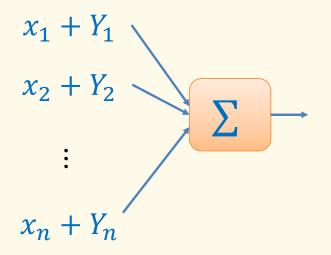
• **Post-processing:** Postprocessing does not decrease privacy.

Local Differential Privacy

Laplacian Mechanism



What if we don't trust aggregator?



Solution: Add noise locally!

Example – Randomized Response

Mechanism M taking input $\vec{x} = (x_1, \dots, x_n)$: • For all i = 1, ..., n: $-y_i = x_i$ w/ probability $\frac{1}{2} + \alpha$, and $y_i = 1 - x_i$ w/ probability $\frac{1}{2} - \alpha$. • Return $M(\vec{x}) = \sum_{i=1}^{n} \hat{x}_i$ S. L. Warner. Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association, 60(309):63-69, 1965 18

For a given parameter α

Example – Randomize Response

Mechanism *M* taking input $\vec{x} = (x_1, ..., x_n)$: • For all i = 1, ..., n: $- y_i = x_i$ w/ probability $\frac{1}{2} + \alpha$, and $y_i = 1 - x_i$ w/ probability $\frac{1}{2} - \alpha$. $- \hat{x}_i = \frac{y_i - \frac{1}{2} + \alpha}{2\alpha}$

• Return $M(\vec{x}) = \sum_{i=1}^{n} \hat{x}_i$

Theorem. Randomized Response with parameter α satisfies ϵ -differential privacy, if $\alpha = \frac{e^{\epsilon}-1}{e^{\epsilon}+1}$.

Fact 1. $\mathbb{E}[M(\vec{x})] = \sum_{i=1}^{n} x_i$

Fact 2.
$$\operatorname{Var}(M(\vec{x})) \approx \frac{n}{\epsilon^2}$$

19

Differential Privacy – Challenges

- Accuracy vs. privacy: How do we choose ϵ ?
 - Practical applications tend to err in favor of accuracy.
 - See e.g. https://arxiv.org/abs/1709.02753
 - E.g. Privacy budgets of 2, 4, 8 per application feature, not tiny as assumed. These exponents add up quickly!
- Fairness: Differential privacy hides contribution of small groups, <u>by design</u>
 - How do we avoid excluding minorities?
 - Very hard problem!
- Ethics: Does differential privacy incentivize data collection?

Literature

- Cynthia Dwork and Aaron Roth. "The Algorithmic Foundations of Differential Privacy".
 - https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
- https://privacytools.seas.harvard.edu/