
CSE 312: Foundations of Computing II Spring 2022

Quiz Section 9 – Solutions

Review

1) An estimator θ̂ for a parameter θ of a probability distribution is unbiased iff Erθ̂pX1, . . . , Xnqs “ θ

2) discrete-time stochastic process (DTSP) is a sequence of random variables Xp0q, Xp1q, Xp2q, ..., where
Xptq is the value at time t. For example, the temperature in Seattle or stock price of TESLA each day, or
which node you are at after each time step on a random walk on a graph.

3) Markov Chain is a DTSP, with the additional following three properties:

(a) ...has a finite (or countably infinite) state space S “ ts1, . . . , snu which it bounces between, so each
Xptq P S.

(b) ...satisfies the Markov property. A DTSP satisfies the Markov property if the future is (conditionally)
independent of the past given the present. Mathematically, it means,

P
´

Xpt`1q “ xt`1 | Xp0q “ x0, X
p1q “ x1, . . . , X

pt´1q “ xt´1, X
ptq “ xt

¯

“ P
´

Xpt`1q “ xt`1 | Xptq “ xt

¯

.

(c) ...has fixed transition probabilities. Meaning, if we are at some state si, we transition to another
state sj with probability independent of the current time. Due to this property and the previous, the
transitions are governed by n2 probabilities: the probability of transitioning from one of n current states
to one of n next states. These are stored in a square n ˆ n transition probability matrix (TPM) M,
where Mij “ P

`

Xpt`1q “ sj | Xptq “ si
˘

is the probability of transitioning from state si to state sj for
any/every value of t.

4) A stationary distribution of a Markov chain is a probability distribution on states that is unchanged by taking
one step of the Markov chain.

Task 1 – A biased estimator

In class, we showed that the maximum likelihood estimate of the variance θ2 of a normal distribution (when both
the true mean µ and true variance σ2 are unknown) is what’s called the population variance. That is

θ̂2 “

˜

1

n

n
ÿ

i“1

pxi ´ θ̂1q2q

¸

where θ̂1 “ 1
n

řn
i“1 xi is the MLE of the mean. Is θ̂2 unbiased?

Let X “ 1
n

řn
i“1 Xi. Then

E
”

θ̂2

ı

“ E

«

1

n

n
ÿ

i“1

pXi ´ Xq2

ff

“ E

«

1

n

n
ÿ

i“1

pX2
i ´ 2XiX ` X

2
q

ff

which by linearity of expectation (and distributing the sum) is

“
1

n

n
ÿ

i“1

E
“

X2
i

‰

´ E

«

2

n
X

n
ÿ

i“1

Xi

ff

` E
”

X
2
ı

“
1

n

n
ÿ

i“1

E
“

X2
i

‰

´ 2E
”

X
2
ı

` E
”

X
2
ı

“
1

n

n
ÿ

i“1

E
“

X2
i

‰

´ E
”

X
2
ı

. p˚˚q
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We know that for any random variable Y , since Var pY q “ E
“

Y 2
‰

´ pE rY sq2 it holds that

E
“

Y 2
‰

“ Var pY q ` pE rY sq2.

Also, we have E rXis “ µ, Var pXiq “ σ2 @i and E
“

X
‰

“ µ, Var
`

X
˘

“ σ2

n . Combining these facts,
we get

E
“

X2
i

‰

“ σ2 ` µ2 @i and E
”

X
2
ı

“
σ2

n
` µ2.

Substituting these equations into (**) we get

E

«

1

n

n
ÿ

i“1

pXi ´ Xq2q

ff

“
1

n

n
ÿ

i“1

E
“

X2
i

‰

´ E
”

X
2
ı

“ σ2 ` µ2 ´

ˆ

σ2

n
` µ2

˙

“

ˆ

1 ´
1

n

˙

σ2.

Thus θ̂2 is not unbiased.

Task 2 – Weather Forecast

A weather forecaster predicts sun with probability θ1, clouds with probability θ2 ´ θ1, rain with probability 1
2 and

snow with probability 1
2 ´ θ2. This year, there have been 55 sunny days, 100 cloudy days, 160 rainy days and 50

snowy days. What is the maximum likelihood estimator for θ1 and θ2?

We want to find the likelihood of the data samples given the parameter θ. To do this, we take the
following product over all the data points.

Lpx1, ..., x365 | θ1, θ2q “ θ551 pθ2 ´ θ1q100
ˆ

1

2

˙160 ˆ

1

2
´ θ2

˙50

Then, we use this to determine the log likelihood.

lnLpx1, ..., x365 | θ1, θ2q “ ln θ551 pθ2 ´ θ1q100
ˆ

1

2

˙160 ˆ

1

2
´ θ2

˙50

“ ln θ551 ` lnpθ2 ´ θ1q100 ` ln

ˆ

1

2

˙160

` ln

ˆ

1

2
´ θ2

˙50

“ 55 ln θ1 ` 100 lnpθ2 ´ θ1q ` 160 ln

ˆ

1

2

˙

` 50 ln

ˆ

1

2
´ θ2

˙

Then, we take the derivative of the log likelihood with respect to θ1.

B

Bθ1
lnLpx1, ..., x365 | θ1, θ2q “

55

θ1
´

100

θ2 ´ θ1

Setting this equal to 0, we solve for θ̂1:

55

θ̂1
´

100

θ̂2 ´ θ̂1
“ 0

55pθ̂2 ´ θ̂1q ´ 100 θ̂1 “ 0
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55 θ̂2 “ 155 θ̂1

θ̂1 “
11

31
θ̂2

Then, we take the derivative of the log likelihood with respect to θ2.

B

Bθ2
lnLpx1, ..., x365 | θ1, θ2q “

100

θ2 ´ θ1
´

50
1
2 ´ θ2

Setting this equal to 0, we solve for θ̂2:

100

θ̂2 ´ θ̂1
´

50
1
2 ´ θ̂2

“ 0

100

ˆ

1

2
´ θ̂2

˙

´ 50 pθ̂2 ´ θ̂1q “ 0

50 ´ 150 θ̂2 ` 50 θ̂1 “ 0

θ̂2 “
θ̂1 ` 1

3

We can now solve the simultaneous equations we have for θ1 and θ2 to obtain the maximum likelihood
estimators for each parameter.

θ̂2 “
θ̂1 ` 1

3

Plugging in the equation for θ1, we find

θ̂2 “

11
31 θ̂2 ` 1

3

3 θ̂2 “
11

31
θ̂2 ` 1

93 θ̂2 “ 11 θ̂2 ` 31

θ̂2 “
31

82

Plugging in the value for θ2 into the equation for θ1,

θ̂1 “
11

31
¨
31

82
“

11

82

To confirm that this is in fact a maximum, we could do a second derivative test. We won’t ask you
do this for this multivariate case, but it would still be good to check!

Task 3 – Faulty Machines

You are trying to use a machine that only works on some days. If on a given day, the machine is working it will
break down the next day with probability 0 ă b ă 1, and works on the next day with probability 1´ b. If it is not
working on a given day, it will work on the next day with probability 0 ă r ă 1 and not work the next day with
probability 1 ´ r.

a) In this problem we will formulate this process as a Markov chain. First, let Xptq be a variable that denotes
the state of the machine at time t. Then, define a state space S that includes all the possible states that the
machine can be in. Lastly, for all A,B P S find PpXpt`1q “ A | Xptq “ Bq (A and B can be the same state).
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Formally, a Markov chain is defined by a state space S and a transition probability matrix. The two
possible states of the machine are “working” and “broken”. So, S “ tW,Bu. Let Xt be the state
of the process at time t. Then we can define the following transition probabilities:

PpXpt`1q “ W | Xptq “ W q “ 1 ´ b PpXpt`1q “ B | Xptq “ W q “ b

PpXpt`1q “ W | Xptq “ Bq “ r PpXt`1 “ B | Xptq “ Bq “ 1 ´ r

We can also represent the transition probabilities with the following matrix:

M “

„

1 ´ b b
r 1 ´ r

ȷ

where the ij-th entry is probability that the machine is in the j-th state at time t ` 1 given it was
in state i at time t. (Here state 1 is working and state 2 is broken.)

b) Suppose that on day 1, the machine is working. What is the probability that it is working on day 3?

We are trying to find PpXp3q “ W | Xp1q “ W q. From the law of total probability, and then
plugging in the values from our transition matrix:

PpXp3q “ W | Xp1q “ W q

“
ÿ

iPS
PpXp3q “ W | Xp1q “ W,Xp2q “ iq ¨ PpXp2q “ i | Xp1q “ W q

“ PpXp3q “ W | Xp2q “ W q ¨ PpXp2q “ W | Xp1q “ W q

` PpXp3q “ W | Xp2q “ Bq ¨ PpXp2q “ B | Xp1q “ W q

“ PpXp3q “ W | Xp2q “ W q ¨ p1 ´ bq ` PpXp3q “ W | Xp2q “ Bq ¨ b

“ p1 ´ bqp1 ´ bq ` rb

“ p1 ´ bq2 ` rb

Alternative solution using matrix operations: Let qptq be the probability vector at time t associated
with this Markov chain. The assumption that the machine is working on day 1 is the same as saying
that the probability vector qp1q “ r1, 0s. Then

qp2q “ qp1q ¨ M “
“

1 0
‰

„

1 ´ b b
r 1 ´ r

ȷ

“
“

1 ´ b b
‰

.

The probability we want to compute is the 1st entry of

qp3q “ qp2q ¨ M “
“

1 ´ b b
‰

„

1 ´ b b
r 1 ´ r

ȷ

which equals p1 ´ bq ¨ p1 ´ bq ` b ¨ r “ p1 ´ bq2 ` br.

c) As n Ñ 8, what does the probability that the machine is working on day n converge to? To get the answer,
solve for the stationary distribution.

The stationary distribution is the row vector π “ rπW πBs such that πP “ π. The entries in
the vector πW and πB can be interpreted as the probabilities that the machine works or is broken
converge to. As such, πW ` πB “ 1. Additionally, multiplying the stationary distribution by the
TPM gives us the following two equations (one per column of M):

πW “ πW p1 ´ bq ` πB r πB “ πW b ` πBp1 ´ rq
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Solving these 3 equations for πW and πB gives us the following solutions for the stationary distri-
bution:

πW “
r

b ` r
πB “

b

b ` r

So, as n Ñ 8 the probability that the machine works on day n is πW “ r
b`r

Task 4 – Another Markov Chain

Suppose that the following is the transition probability matrix for a 4 state Markov chain (states 1,2,3,4).

M “

»

—

—

–

0 1{2 1{2 0
1{3 0 0 2{3
1{3 1{3 0 1{3
1{5 2{5 2{5 0

fi

ffi

ffi

fl

a) What is the probability that Xp2q “ 4 given that Xp0q “ 4?

Let’s denote the state space S “ t1, 2, 3, 4u. Using the law of total probability we can determine
that

PpXp2q “ 4 | Xp0q “ 4q “
ÿ

iPS
PpXp2q “ 4 | Xp0q “ 4, Xp1q “ iq PpXp1q “ i | Xp0q “ 4q

“
ÿ

iPS
PpXp2q “ 4 | Xp1q “ iq PpXp1q “ i | Xp0q “ 4q

“ 0 `
2

5
¨
2

3
`

2

5
¨
1

3
` 0

“
2

5

Alternative solution using matrix operations: Let qptq be the probability vector at time t associated
with this Markov chain. The statement that Xp0q “ 4 is equivalent to saying that the probability
vector qp0q “ r0, 0, 0, 1s. Therefore

qp1q “ qp0q ¨ M “
“

0 0 0 1
‰

¨

»

—

—

–

0 1{2 1{2 0
1{3 0 0 2{3
1{3 1{3 0 1{3
1{5 2{5 2{5 0

fi

ffi

ffi

fl

“
“

1{5 2{5 2{5 0
‰

.

What we want is the 4-th entry of

qp2q “ qp1q ¨ M “
“

1{5 2{5 2{5 0
‰

¨

»

—

—

–

0 1{2 1{2 0
1{3 0 0 2{3
1{3 1{3 0 1{3
1{5 2{5 2{5 0

fi

ffi

ffi

fl

This is 0 ` 2
5 ¨ 2

3 ` 2
5 ¨ 1

3 ` 0 “ 2{5.

b) Write down the system of equations that the stationary distribution must satisfy and solve them.

The stationary distribution is the row vector π “ rπ1 π2 π3 π4s such that πP “ π. We know that
π1 ` π2 ` π3 ` π4 “ 1. Additionally, multiplying the stationary distribution by the TPM gives us
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the following equations:

π1 “
1

3
π2 `

1

3
π3 `

1

5
π4

π2 “
1

2
π1 `

1

3
π3 `

2

5
π4

π3 “
1

2
π1 `

2

5
π4

π4 “
2

3
π2 `

1

3
π3

Solving these 5 equations for each πi gives us the following solutions for the stationary distribution:

π1 “
46

206
π2 “

60

206
π3 “

45

206
π4 “

55

206

Task 5 – Three Tails

You flip a fair coin until you see three tails in a row. Model this as a Markov chain with the following states:

- S: start state, which we are only in before flipping any coins.

- H: We see a heads, which means no streak of tails currently exists.

- T : We’ve seen exactly one tail in a row so far.

- TT : We’ve seen exactly two tails in a row so far.

- TTT : We’ve accomplished our goal of seeing three tails in a row, stop flipping, and stay there.

a) Write down the transition probability matrix.

M “

»

—

—

—

—

–

0 1{2 1{2 0 0
0 1{2 1{2 0 0
0 1{2 0 1{2 0
0 1{2 0 0 1{2
0 0 0 0 1

fi

ffi

ffi

ffi

ffi

fl

b) Write down the system of equations whose variables are Dpsq for each state s P tS,H, T, TT, TTT u, where
Dpsq is the expected number of steps until state TTT is reached starting from state s. Solve this system of
equations to find DpSq.

Using the law of total expectation and the transition probability matrix above we can set up and
solve the following system of equations:

DpTTT q “ 0

DpTT q “ 1 `
1

2
DpHq `

1

2
DpTTT q “

1

2
DpHq ` 1

DpT q “ 1 `
1

2
DpHq `

1

2
DpTT q “

3

4
DpHq `

3

2

DpHq “ 1 `
1

2
DpHq `

1

2
DpT q “

7

8
DpHq `

7

4

DpSq “ 1 `
1

2
DpHq `

1

2
DpT q “

7

8
DpHq `

7

4

Solving for DpHq gives us that DpHq “ 14, which allows as to solve for the rest of the expected
number of steps, DpTT q “ 8, DpT q “ 12, DpSq “ 14. So, we expect to flip 14 coins before we
flip three tails in a row.
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c) Write down the system of equations whose variables are γpsq for each state s P tS,H, T, TT, TTT u, where
γpsq is the expected number of heads seen before state TTT is reached. Solve this system to find γpSq, the
expected number of heads seen overall until getting three tails in a row.

Like in the previous part we can use the LoTE and the Transition Probability Matrix to set up and
solve the following system of equations. We get one equation for each column of M :

γpTTT q “ 0

γpTT q “ 0.5γpHq ` 0.5γpTTT q “ 0.5γpHq

γpT q “ 0.5γpHq ` 0.5γpTT q “ 0.75γpHq

γpHq “ 1 ` 0.5γpHq ` 0.5γpT q “ 0.875γpHq ` 1

γpSq “ 0.5γpHq ` 0.5γpT q “ 0.875γpHq

Solving for γpHq gives us γpHq “ 8. This allows us to solve for the other expected values which
are γpTT q “ 4, γpT q “ 6, γpSq “ 7. So, we expect to see 7 heads before we flip three tails in a
row.
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