CSE 312
 Foundations of Computing II

Lecture 2: Permutation and Combinations

Announcements

Homework:

- Pset1 will be out before tomorrow's quiz section and is due 11:59pm next Wednesday.
- We will have the same pattern for all the other assignments except for the last one (because of the Memorial Day holiday).

Python programming on homework:

- Some problem sets will include coding problems
- in Python (no prior knowledge or experience required)
- provide a deeper understanding of how theory we discuss is used in practice
- should be fun

Quick counting summary from last class

- Sum rule:

If you can choose from

- EITHER one of n options,
- OR one of m options with NO overlap with the previous n, then the number of possible outcomes of the experiment is $n+m$
- Product rule:

In a sequential process, if there are
$-n_{1}$ choices for the $1^{\text {st }}$ step,
$-n_{2}$ choices for the $2^{\text {nd }}$ step (given the first choice),... , and
$-n_{k}$ choices for the $k^{\text {th }}$ step (given the previous choices),
then the total number of outcomes is $n_{1} \times n_{2} \times n_{3} \times \cdots \times n_{k}$

- Representation of the problem is important (creative part)

Today: More Counting

- Permutations and Combinations

Note: Sequential process for product rule works even if the sets of options are different at each point "How many sequences in $\{1,2,3\}^{3}$ with no repeating i2 3 elements?"

Nice use of sum rule: Counting using complements

$$
113 \times 123 x
$$

"How many sequences in $\{1,2,3\}^{3}$ have repeating elements?" m
"\# of sequences in $\{1,2,3\}^{3}$ with no repeating elements" $n=6$
"\# of sequences in $\{1,2,3\}^{3} \quad 3^{3}=27$

$$
=m+n \text { by the sum rule }
$$

All sequences

Factorial

$$
S=\left\{e_{1}, \ldots, e_{4}\right\}
$$

"How many ways to order elements in $(S$,$) where |S|=n$?"
Permutations

$$
\text { Answer }=n \times(n-1) \times(n-2) \times \cdots \times 2 \times 1
$$

Definition. The factorial function is

$$
n!=n \times(n-1) \times \cdots \times 2 \times 1
$$

Note: $0!=1$

Theorem. (Stirling's approximation)

$$
\begin{array}{ll}
=2.5066 & n^{n+\frac{1}{2}} \cdot e^{-n} \leq n!\leq e \cdot\left(n^{n+\frac{1}{2}}\right) e^{-n} \\
& =2.7183
\end{array}
$$

Distinct Letters

"How many sequences of 5 distinct alphabet letters from $\{A, B, \ldots, Z\}$?"
E.g., AZURE, BINGO, TANGO. But not: STEVE, SARAH

Answer: $26 \times 25 \times 24 \times 23 \times 22=7893600$

In general

Aka: k-permutations

Fact. \# of k-element sequences of distinct symbols from an n-element set is

$$
P(n, k)=n \times(n-1) \times \cdots \times(n-k+1)=\frac{\sqrt{n!}}{(n-k)!}
$$

Number of Subsets

"How many size-5 subsets of $\{A, B, \ldots, Z\}$?"
E.g., $\{A, Z, U, R, E\},\{B, 1,1, N, G, O\},\{T, A, N, G, O\}$. But not: $\{S, T, E, \bar{V}\},\left\{\bar{S}, A, R^{\prime}, \bar{H}\right\}, \ldots$

Difference from k-permutations: NO ORDER Different sequences: TANGO, OGNAT, ATNGO, NATGO, ONATG ... Same set: \{T,A,N,G,O\}, \{O,G,N,A,T\}, \{A,T,N,G,O\},\{N,A,T,G,O\},\{O,N,A,T,G\}... ...

Number of Subsets - Idea

Consider a sequential process:

1. Choose a subset $S \subseteq\{A, B, \ldots, Z\}$ of size $|S|=5$ e.g. $S=\{A, G, N, O, T\}$
2. Choose a permutation of letters in S e.g., TANGO, AGNOT, NAGOT, GOTAN, GOATN, NGOAT, ...
???
\times

Number of Subsets - Binomial Coefficient

Fact. The number of subsets of size k of a set of size n is

Binomial coefficient (verbalized as " n choose k ")

Notation: $\binom{S}{k}=$ all k-element subsets of S

$$
\left|\binom{S}{k}\right|=\binom{|S|}{k}
$$ [also called combinations]

Example - Counting Paths

"How many shortest paths from Gates to Starbucks?"

Example - Counting Paths

How do we represent a path?

Example - Counting Paths

$$
\{1,3,6,2\}
$$

Path $\in\left[\{\uparrow, \rightarrow\}^{8}\right.$
$\left(\begin{array}{l}\{\uparrow, \rightarrow, \uparrow, \rightarrow, \rightarrow, \uparrow, \uparrow, \rightarrow) \\ \# \uparrow ' s=4, \# \rightarrow \prime \\ \text { Poll: }=4\end{array}\right.$ A. 2^{8}
B. $\frac{8!}{4!}$
C. $\binom{8}{4}=\frac{8!}{4!4!}$
D. No idea
https://pollenv.com/stefanotessaro617

Example - Sum of integers

"How many solutions $\left(x_{1}, \ldots, x_{k}\right)$ sule such that $x_{1}, \ldots, x_{k} \geq 0$ and $\sum_{i=1}^{k} x_{i}=n$?"

Example: $k=3, n=5$

$$
(0,0,5),(\underbrace{5,0,0}),(1,0,4),(2,1,2),(3,1,1),(2,3,0), \ldots
$$

Hint: we can represent each solution as a binary string.

Example - Sum of integers
Example: $k=3, n=5$

$$
(0,0,5),(5,0,0),(1,0,4),(2,1,2),(3,1,1),(2,3,0), \ldots
$$

Clever representation of solutions

$(3,1,1)$
$(2,1,2)$
\downarrow
$(1,0,4)$
\downarrow
$\underbrace{11}_{\sim} 0{\underset{\tau}{1}}_{1}^{0}{\underset{\tau}{1}}_{1}^{1} \underset{\sim}{1} 010 \underbrace{11}_{\sim} \quad \underset{\sim}{1} \frac{010}{0} 1111$

Example - Sum of integers

Example: $k=3, n=5$
\# sols $=$ \# strings from $\{0,1\}^{7} \mathrm{w} /$ exactly two $0 \mathrm{~s}=\binom{7}{2}^{5!2!}=21 \quad \frac{2!}{2}$

Clever representation of solutions

$(3,1,1)$
$(2,1,2)$
$(1,0,4)$

\downarrow
$1110101 \quad 1101011 \quad 1001111$

Example - Sum of integers

"How many solutions $\left(x_{1}, \ldots, x_{k}\right)$ such that $x_{1}, \ldots, x_{k} \geq 0$ and $\sum_{i=1}^{k} x_{i}=n$?"
\# sols = \# strings from $\{0,1\}^{n+k-1} \mathrm{w} / k-1$ 0s

$$
=\binom{\overline{n+} k-1}{k-1}
$$

After a change in representation, the problem magically reduces to counting combinations.

Example - Word Permutations

"How many ways to re-arrange the letters in the word SEATTLE?

STALEET, TEALEST, LASTTEE, ...

Guess: 7! Correct?!

No! e.g., swapping two T's lead both to SEATTLE swapping two E's lead both to SEATTLE

Counted as separate permutations, but they lead to the same word.

Example - Word Permutations

"How many ways to re-arrange the letters in the word SEATTLE?
STALEET, TEALEST, LASTTEE, ...

$$
\begin{gathered}
\text { Location of S } \\
\binom{7}{2} \times\binom{ 5}{2} \times 3 \times 2 \times 1 \\
\text { Location of A } \\
\text { Location of } \mathrm{L}
\end{gathered}
$$

Locations of E's
Locations of T's

Example II - Word Permutations

"How many ways to re-arrange the letters in the word SEATTLE?
STALEET, TEALEST, LASTTEE, ...

$$
\begin{aligned}
\binom{7}{2} \times\binom{ 5}{2} \times 3 \times 2 \times 1 & =\frac{7!}{2!5!} \times \frac{5!}{2!8!} \times 3! \\
& =\frac{7!}{2!2!}=1260
\end{aligned}
$$

Arrange the 7 letters as if they were distinct. Then divide by 2 ! to account for 2 duplicate T's, and divide by 2 ! again for 2 duplicate E's.

Quick Summary

- k-sequences: How many length k sequences over alphabet of size n ?
- Product rule $\boldsymbol{\rightarrow} n^{k}$
- k-permutations: How many length k sequences over alphabet of size n, without repetition?
- Permutation $\rightarrow \frac{n!}{(n-k)!}$
- k-combinations: How many size k subsets of a set of size n (without repetition and without order)?
- Combination $\rightarrow\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Binomial Coefficient - Many interesting and useful properties

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \quad\binom{n}{n}=1 \quad\binom{n}{1}=n \quad\binom{n}{0}=1
$$

Fact. $\binom{n}{k}=\binom{n}{n-k} \quad$ Symmetry in Binomial Coefficients
Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \quad$ Pascal's Identity

Fact. $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$

Follows from Binomial theorem (Next lecture)

Symmetry in Binomial Coefficients

Fact. $\binom{n}{k}=\binom{n}{n-k}$
This is called an Algebraic proof, i.e., Prove by checking algebra

$$
\text { Proof. }\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n!}{(n-k)!k!}=\binom{n}{n-k}
$$

Symmetry in Binomial Coefficients - A different proof

Fact. $\binom{n}{k}=\binom{n}{n-k}$

Two equivalent ways to choose k out of n objects (unordered)

1. Choose which k elements are included
2. Choose which $n-k$ elements are excluded
\square

$$
\binom{4}{1}=4=\binom{4}{3}
$$

Symmetry in Binomial Coefficients - A different proof

Fact. $\binom{n}{k}=\binom{n}{n-k}$

Two equivalent ways to choose k out of n objects (unordered)

1. Choose which k elements are included
2. Choose which $n-k$ elements are excluded

Format for a combinatorial argument/proof of $a=b$

- Let S be a set of objects
- \quad Show how to count $|S|$ one way $\Rightarrow|S|=a$
- \quad Show how to count $|S|$ another way $\Rightarrow|S|=b$

Combinatorial argument/proof

- Elegant
- Simple
- Intuitive

Algebraic argument

- Brute force
- Less Intuitive

This Photo by Unknown Author is licensed under CC BY-SA

Pascal's Identities

Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ How to prove Pascal's identity?

Algebraic argument:

$$
\begin{aligned}
\binom{n-1}{k-1}+\binom{n-1}{k} & =\frac{(n-1)!}{(k-1)!(n-k)!}+\frac{(n-1)!}{k!(n-1-k)!} \\
& =20 \text { years later } \ldots \\
& =\frac{n!}{k!(n-k)!} \quad \text { Hard work and not intuitive } \\
& =\binom{n}{k} \quad
\end{aligned}
$$

Let's see a combinatorial argument

Example - Binomial Identity

Fact. $\begin{aligned}\binom{n}{k} & =\binom{n-1}{k-1}+\binom{n-1}{k} \\ |S| & =|A|+|B|\end{aligned}$

Combinatorial proof idea:

- Find disjoint sets A and B such that A, B, and $S=A \cup B$ have the sizes above.
- The equation then follows by the Sum Rule.

Example - Binomial Identity

$$
\begin{aligned}
\text { Fact. }\binom{n}{k} & =\binom{n-1}{k-1}+\binom{n-1}{k} \\
|S| & =|A|+|B|
\end{aligned}
$$

S : set of size k subsets of $[n]=\{1,2, \cdots, n\} . \quad|S|=\binom{n}{k}$

Combinatorial proof idea:

- Find disjoint sets A and B such that A, B, and $\quad S$ $=A \cup B$ have these sizes
e.g. $n=4, k=2, S=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$
A : set of size k subsets of $[n]$ that DO include n

$$
A=\{\{1,4\},\{2,4\},\{3,4\}\}
$$

B : set of size k subsets of $[n]$ that DON'T include n

$$
B=\{\{1,2\},\{1,3\},\{2,3\}\}
$$

Example - Binomial Identity

$$
\text { Fact. } \begin{aligned}
\binom{n}{k} & =\binom{n-1}{k-1}+\binom{n-1}{k} \\
|S| & =|A|+|B|
\end{aligned}
$$

S : set of size k subsets of $[n]=\{1,2, \cdots, n\}$.
A : set of size k subsets of $[n]$ that DO include n
B : set of size k subsets of $[n]$ that DON'T include n

Combinatorial proof idea:

- Find disjoint sets A and B such that A, B, and $\quad S$ $=A \cup B$ have these sizes
n is in set, need to choose other $k-1$ elements from [$n-1$]

$$
|A|=\binom{n-1}{k-1}
$$

n not in set, need to choose k elements from $[n-1]$

$$
|B|=\binom{n-1}{k}
$$

