CSE 312 Foundations of Computing II

Lecture 2: Permutation and Combinations

Announcements

Homework:

- Pset1 will be out before tomorrow's quiz section and is due 11:59pm next Wednesday.
- We will have the same pattern for all the other assignments except for the last one (because of the Memorial Day holiday).

Python programming on homework:

- Some problem sets will include coding problems
- in Python (no prior knowledge or experience required)
- provide a deeper understanding of how theory we discuss is used in practice
- should be fun

Quick counting summary from last class

- Sum rule:

If you can choose from

- EITHER one of n options,
- OR one of m options with NO overlap with the previous n, then the number of possible outcomes of the experiment is $n+m$
- Product rule:

In a sequential process, if there are
$-n_{1}$ choices for the $1^{\text {st }}$ step,
$-n_{2}$ choices for the $2^{\text {nd }}$ step (given the first choice), \ldots, and
$-n_{k}$ choices for the $k^{\text {th }}$ step (given the previous choices),
then the total number of outcomes is $n_{1} \times n_{2} \times n_{3} \times \cdots \times n_{k}$

- Representation of the problem is important (creative part)

Today: More Counting

- Permutations and Combinations

Note: Sequential process for product rule works even if the sets of options are different at each point "How many sequences in $\{1,2,3\}^{3}$ with no repeating elements?"

Nice use of sum rule: Counting using complements

"How many sequences in $\{1,2,3\}^{3}$ have repeating elements?" m
"\# of sequences in $\{1,2,3\}^{3}$ with no repeating elements" $n=$
" $\#$ of sequences in $\{1,2,3\}^{3} \quad 3^{3}=27=m+n$ by the sum rule

All sequences

$$
m=27-n=\square
$$

Factorial

"How many ways to order elements in S, where $|S|=n$?"
Permutations

$$
\text { Answer }=n \times(n-1) \times(n-2) \times \cdots \times 2 \times 1
$$

Definition. The factorial function is

$$
n!=n \times(n-1) \times \cdots \times 2 \times 1
$$

Note: $0!=1$

Theorem. (Stirling's approximation)

$$
\begin{array}{ll}
\begin{array}{ll}
\underbrace{\sqrt{2 \pi}}_{\text {2 }} \cdot n^{n+\frac{1}{2}} \cdot e^{-n} \leq n! & \leq \underbrace{e} \cdot n^{n+\frac{1}{2}} \cdot e^{-n} \\
=2.5066 & =2.7183
\end{array}
\end{array}
$$

Huge: Grows
exponentially in n

Distinct Letters

"How many sequences of 5 distinct alphabet letters from $\{A, B, \ldots, Z\}$?"
E.g., AZURE, BINGO, TANGO. But not: STEVE, SARAH

Answer: $26 \times 25 \times 24 \times 23 \times 22=$ 7893600

In general

Aka: k-permutations

Fact. \# of k-element sequences of distinct symbols from an n-element set is

$$
P(n, k)=n \times(n-1) \times \cdots \times(n-k+1)=\frac{n!}{(n-k)!}
$$

Number of Subsets

"How many size-5 subsets of $\{A, B, \ldots, Z\}$?"
E.g., $\{A, Z, U, R, E\},\left\{B, \Gamma,{ }^{\prime}, N, G, O\right\},\{T, A, N, G, O\}$. But not: $\{S, T, E, V\},\{S, A, R, \mathcal{T}, H\}, \ldots$

Difference from k-permutations: NO ORDER Different sequences: TANGO, OGNAT, ATNGO, NATGO, ONATG ... Same set: \{T,A,N,G,O\}, \{O,G,N,A,T\}, \{A,T,N,G,O\}, \{N,A,T,G,O\}, \{O,N,A,T,G\}... ...

Number of Subsets - Idea

Consider a sequential process:

1. Choose a subset $S \subseteq\{A, B, \ldots, Z\}$ of size $|S|=5$ e.g. $S=\{A, G, N, O, T\}$
2. Choose a permutation of letters in S e.g., TANGO, AGNOT, NAGOT, GOTAN, GOATN, NGOAT, ...

Outcome: A sequence of 5 distinct letters from $\{A, B, \ldots, Z\}$

$$
? ? ?=\frac{26!}{21!5!}=65780
$$

=
26!
21!

Number of Subsets - Binomial Coefficient

Fact. The number of subsets of size k of a set of size n is

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Binomial coefficient (verbalized as " n choose k ")

Notation: $\binom{S}{k}=$ set of all k-element subsets of $S . \quad\left|\binom{S}{k}\right|=\binom{|S|}{k}$ [also called combinations]

$$
\left|\binom{S}{k}\right|=\binom{|S|}{k}
$$

Example - Counting Paths

"How many shortest paths from Gates to Starbucks?"

Example - Counting Paths

How do we
represent a
shortest path?

Example - Counting Paths

Example - Sum of integers

"How many solutions $\left(x_{1}, \ldots, x_{k}\right)$ such that $x_{1}, \ldots, x_{k} \geq 0$ and $\sum_{i=1}^{k} x_{i}=n$?"

Example: $k=3, n=5$

$$
(0,0,5),(5,0,0),(1,0,4),(2,1,2),(3,1,1),(2,3,0), \ldots
$$

Hint: we can represent each solution as a binary string.

Example - Sum of integers
Example: $k=3, n=5$

$$
(0,0,5),(5,0,0),(1,0,4),(2,1,2),(3,1,1),(2,3,0), \ldots
$$

Clever representation of solutions
$(3,1,1)$
$(2,1,2)$
$(1,0,4)$

s
1110101
1101011
1001111

Example - Sum of integers
Example: $k=3, n=5$
\# sols $=$ \# strings from $\{0,1\}^{7}$ w/ exactly two 0 s $=\binom{7}{2}=21$
Clever representation of solutions
$(3,1,1)$
$(2,1,2)$
$(1,0,4)$
,

1110101
1101011
1001111

Example - Sum of integers

"How many solutions $\left(x_{1}, \ldots, x_{k}\right)$ such that $x_{1}, \ldots, x_{k} \geq 0$ and $\sum_{i=1}^{k} x_{i}=n$?"
\# sols $=$ \# strings from $\{0,1\}^{n+k-1} \mathrm{w} / k-1$ 0s

$$
=\binom{n+k-1}{k-1}
$$

After a change in representation, the problem magically reduces to counting combinations.

Example - Word Permutations

"How many ways to re-arrange the letters in the word SEATTLE?
STALEET, TEALEST, LASTTEE, ...
Guess: 7! Correct?!

No! e.g., swapping two T's also leads to SEATTLE swapping two E's also leads to SEATTLE

Counted as separate permutations, but they lead to the same word.

Example - Word Permutations

"How many ways to re-arrange the letters in the word SEATTLE?
STALEET, TEALEST, LASTTEE, ...

Example II - Word Permutations

"How many ways to re-arrange the letters in the word SEATTLE?
STALEET, TEALEST, LASTTEE, ...

$$
\binom{7}{2} \times\binom{ 5}{2} \times 3 \times 2 \times 1=\frac{7!}{2!5!} \times \frac{8!}{2!3!} \times 3!
$$

$$
=\frac{7!}{2!2!}=1260
$$

Arrange the 7 letters as if they were distinct. Then divide by 2 ! to account for 2 duplicate T's, and divide by 2 ! again for 2 duplicate E's.

Quick Summary

- k-sequences: How many length k sequences over alphabet of size n ?
- Product rule $\rightarrow n^{k}$
- k-permutations: How many length k sequences over alphabet of size n, without repetition?
- Permutation $\rightarrow \frac{n!}{(n-k)!}$
- k-combinations: How many size k subsets of a set of size n (without repetition and without order)?
- Combination $\rightarrow\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Binomial Coefficient - Many interesting and useful properties

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \quad\binom{n}{n}=1 \quad\binom{n}{1}=n \quad\binom{n}{0}=1
$$

Fact. $\binom{n}{k}=\binom{n}{n-k}$
Symmetry in Binomial Coefficients

Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ Pascal's Identity

Fact. $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$
Follows from Binomial theorem
(Next lecture)

Symmetry in Binomial Coefficients

Fact. $\binom{n}{k}=\binom{n}{n-k}$

This is called an Algebraic proof, i.e., Prove by checking algebra

$$
\text { Proof. }\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n!}{(n-k)!k!}=\binom{n}{n-k}
$$

Symmetry in Binomial Coefficients - A different proof

Fact. $\binom{n}{k}=\binom{n}{n-k}$

Two equivalent ways to choose k out of n objects (unordered)

1. Choose which k elements are included
2. Choose which $n-k$ elements are excluded

Symmetry in Binomial Coefficients - A different proof

Fact. $\binom{n}{k}=\binom{n}{n-k}$

Two equivalent ways to choose k out of n objects (unordered)

1. Choose which k elements are included
2. Choose which $n-k$ elements are excluded

Format for a combinatorial argument/proof of $a=b$

- Let S be a set of objects
- \quad Show how to count $|S|$ one way $\Rightarrow|S|=a$
- \quad Show how to count $|S|$ another way $\Rightarrow|S|=b$

Combinatorial argument/proof

- Elegant
- Simple
- Intuitive

Algebraic argument

- Brute force
- Less Intuitive

This Photo by Unknown Author is licensed under CC BY-SA

This Photo by Unknown Author is licensed under CC BY-SA

Pascal's Identities

Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$
How to prove Pascal's identity?

Algebraic argument:

$$
\begin{aligned}
\binom{n-1}{k-1}+\binom{n-1}{k} & =\frac{(n-1)!}{(k-1)!(n-k)!}+\frac{(n-1)!}{k!(n-1-k)!} \\
& =20 \text { years later ... } \\
& =\frac{n!}{k!(n-k)!} \quad \text { Hard work and not intuitive } \\
& =\binom{n}{k} \quad
\end{aligned}
$$

Let's see a combinatorial argument

Example - Binomial Identity

Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$
$|S|=|A|+|B|$

Combinatorial proof idea:

- Find disjoint sets A and B such that A, B, and $S=A \cup B$ have the sizes above.
- The equation then follows by the Sum Rule.

Example - Binomial Identity

Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$
S : set of size k subsets of $[n]=\{1,2, \cdots, n\} . \square|S|=\binom{n}{k}$
e.g. $n=4, k=2, S=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$
A : set of size k subsets of $[n]$ that DO include n

$$
A=\{\{1,4\},\{2,4\},\{3,4\}\}
$$

B : set of size k subsets of $[n]$ that DON'T include n

$$
B=\{\{1,2\},\{1,3\},\{2,3\}\}
$$

Example - Binomial Identity

Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$

$$
|S|=|A|+|B|
$$

S : set of size k subsets of $[n]=\{1,2, \cdots, n\}$

Combinatorial proof idea:

- Find disjoint sets A and B such that A, B, and $S=A \cup B$ have these sizes
n is in set, need to choose other $k-1$ elements from [$n-1$]

$$
|A|=\binom{n-1}{k-1}
$$

A : set of size k subsets of $[n]$ that DO include n
B : set of size k subsets of $[n]$ that DON'T include n
n not in set, need to choose k elements from $[n-1]$

$$
|B|=\binom{n-1}{k}
$$

