CSE 312

Foundations of Computing II

Lecture 3: More counting

Binomial Coefficients, Binomial Theorem, Inclusion-Exclusion

Announcements

Office hours start today

In particular, I will be available for office hours starting right after class today (CSE 644)

Problem Set 1

- Read the first page for how to write up your homework solutions. Don't wait until you are working on the questions to figure it out.
- Section solutions are another good place to look at for examples.

Resources

- Textbook readings can provide another perspective
- Theorems & Definitions sheet https://www.alextsun.com/files/defs thms.pdf
- Office Hours
- EdStem discussion

EdStem discussion etiquette

- OK to publically discuss content of the course and any confusion over topics discussed in class, but **not solutions** for current homework problems, or anything about current exams that have not yet been graded.
- It is also acceptable to ask for clarifications about what current homework problems are asking and concepts behind them, just not about their solutions.

2

Recap of Last Time

Permutations. The number of orderings of n distinct objects

$$n! = n \times (n-1) \times \cdots \times 2 \times 1$$

Example: How many sequences in $\{1,2,3\}^3$ with no repeating elements?

k-Permutations. The number of orderings of **only** k out of n distinct objects

$$P(n,k) = n \times (n-1) \times \dots \times (n-k+1)$$
$$= \frac{n!}{(n-k!)}$$

Example: How many sequences of 5 distinct alphabet letters from $\{A, B, ..., Z\}$?

Combinations / **Binomial Coefficient.** The number of ways to select k out of n objects, where ordering of the selected k does not matter:

$$\binom{n}{k} = \frac{P(n,k)}{k!} = \frac{n!}{k! (n-k)!}$$

Example: How many size-5 **subsets** of $\{A, B, ..., Z\}$?

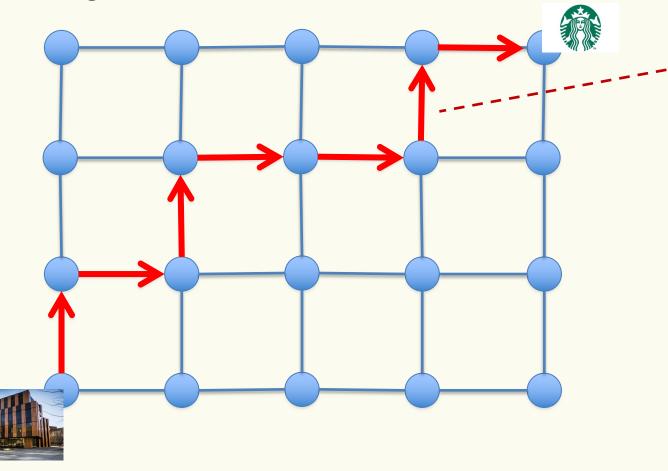
Example: How many shortest paths from Gates to Starbucks?

Example: How many solutions $(x_1, ..., x_k)$ such that $x_1, ..., x_k \ge 0$ and $\sum_{i=1}^k x_i = n$?

Recap* Example – Counting Paths

Path $\in \{\uparrow, \rightarrow\}^7$

A slightly modified example



Example path:

$$(\uparrow, \rightarrow, \uparrow, \rightarrow, \rightarrow, \uparrow, \rightarrow)$$

Agenda

- Binomial Coefficients
- Binomial Theorem
- Inclusion-Exclusion

Binomial Coefficient – Many interesting and useful properties

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$
 $\binom{n}{n} = 1$ $\binom{n}{1} = n$ $\binom{n}{0} = 1$

Fact.
$$\binom{n}{k} = \binom{n}{n-k}$$
 Symmetry in Binomial Coefficients

Fact.
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
 Pascal's Identity

Fact.
$$\sum_{k=0}^{n} {n \choose k} = 2^n$$
 Follows from Binomial Theorem

Symmetry in Binomial Coefficients

Fact.
$$\binom{n}{k} = \binom{n}{n-k}$$

This is called an Algebraic proof, i.e., Prove by checking algebra

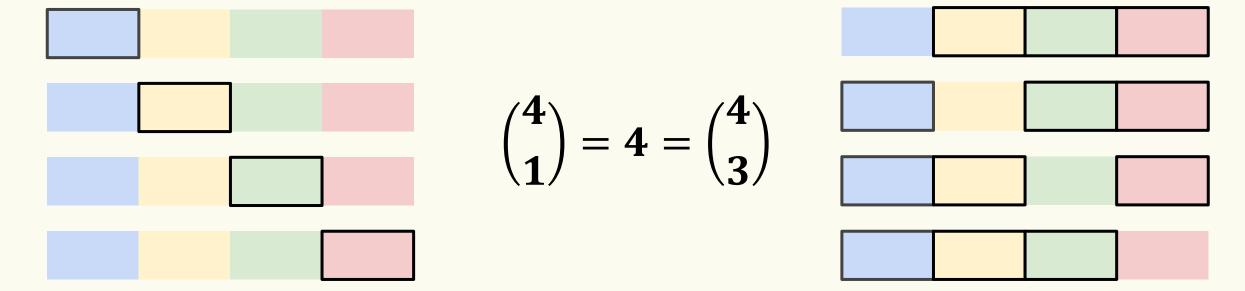
Proof.
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!k!} = \binom{n}{n-k}$$

Symmetry in Binomial Coefficients – A different proof

Fact.
$$\binom{n}{k} = \binom{n}{n-k}$$

Two equivalent ways to choose k out of n objects (unordered)

- 1. Choose which *k* elements are included
- 2. Choose which n-k elements are excluded



Symmetry in Binomial Coefficients – A different proof

Fact.
$$\binom{n}{k} = \binom{n}{n-k}$$

Two equivalent ways to choose k out of n objects (unordered)

- 1. Choose which *k* elements are included
- 2. Choose which n-k elements are excluded

Format for a combinatorial argument/proof of a = b

- Let S be a set of objects
- Show how to count |S| one way $\Rightarrow |S| = a$
- Show how to count |S| another way $\Rightarrow |S| = b$

Combinatorial argument/proof

- Elegant
- Simple
- Intuitive

This Photo by Unknown Author is licensed under CC BY-SA

Algebraic argument

- Brute force
- Less Intuitive

Pascal's Identity

Fact.
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
 How to prove Pascal's identity?

Algebraic argument:

$${\binom{n-1}{k-1}} + {\binom{n-1}{k}} = \frac{(n-1)!}{(k-1)! (n-k)!} + \frac{(n-1)!}{k! (n-1-k)!}$$

$$= 20 \ years \ later \dots$$

$$= \frac{n!}{k! (n-k)!}$$

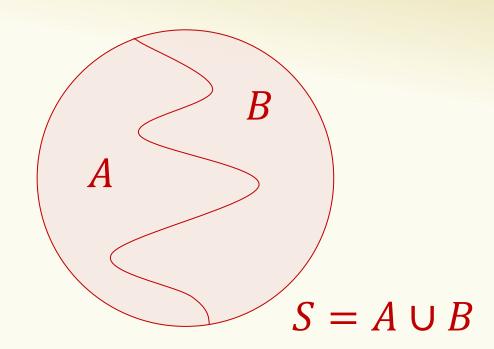
$$= {\binom{n}{k}} \quad \text{Hard work and not intuitive}$$

Let's see a combinatorial argument

Example – Pascal's Identity

Fact.
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

 $|S| = |A| + |B|$



Combinatorial proof idea:

- Find disjoint sets A and B such that A, B, and $S = A \cup B$ have the sizes above.
- The equation then follows by the Sum Rule.

Example – Pascal's Identity

Fact.
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

 $|S| = |A| + |B|$

Combinatorial proof idea:

Find disjoint sets A and B such that A, B, and
 S = A U B have these sizes

 $|S| = \binom{n}{l_r}$

S: set of size
$$k$$
 subsets of $[n] = \{1, 2, \dots, n\}$.

e.g.
$$n = 4, k = 2, S = \{\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}\}\}$$

A: set of size k subsets of [n] that DO include n

$$A = \{\{1,4\}, \{2,4\}, \{3,4\}\}$$

B: set of size k subsets of [n] that DON'T include n

$$B = \{\{1,2\}, \{1,3\}, \{2,3\}\}$$

Example – Pascal's Identity

Fact.
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

 $|S| = |A| + |B|$

S: set of size k subsets of $[n] = \{1, 2, \dots, n\}$.

A: set of size k subsets of [n] that DO include n

B: set of size k subsets of [n] that DON'T include n

Combinatorial proof idea:

Find disjoint sets A and B such that A, B, and
 S = A U B have these sizes

n is in set, need to choose other k-1 elements from [n-1]

$$|A| = \binom{n-1}{k-1}$$

n not in set, need to choose k elements from [n-1]

$$|B| = {n-1 \choose k}$$

Agenda

- Binomial Coefficients
- Binomial Theorem
- Inclusion-Exclusion

Binomial Theorem: Idea

$$(x + y)^2 = (x + y)(x + y)$$

= $xx + xy + yx + yy$
= $x^2 + 2xy + y^2$

Poll: What is the coefficient for xy^3 ?

- A. 4
- $B. \binom{4}{1}$
- C. $\binom{4}{3}$
- *D.* 3

https://pollev.com/stefanotessaro617

$$(x + y)^{4} = (x + y)(x + y)(x + y)(x + y)$$

$$= xxxx + yyyy + xyxy + yxyy + ...$$

Binomial Theorem: Idea

$$(x + y)^n = (x + y) \dots (x + y)$$

Each term is of the form $x^k y^{n-k}$, since each term is made by multiplying exactly n variables, either x or y, one from each copy of (x + y)

How many times do we get $x^k y^{n-k}$?

The number of ways to choose x from exactly k of the n copies of (x + y) (the other n - k choices will be y) which is:

$$\binom{n}{k} = \binom{n}{n-k}$$

Binomial Theorem

Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Many properties of sums of binomial coefficients can be found by plugging in different values of x and y in the Binomial Theorem.

Corollary.
$$\sum_{k=0}^{n} {n \choose k} = 2^n$$

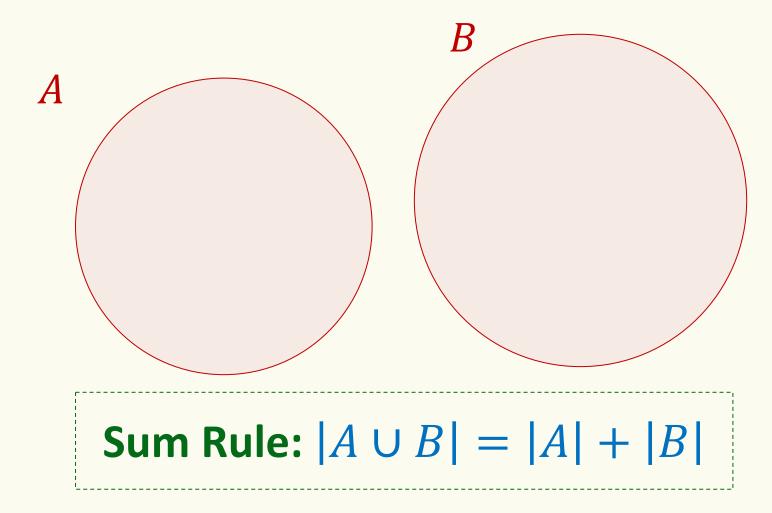
Brain Break

Agenda

- Binomial Coefficients
- Binomial Theorem
- Inclusion-Exclusion

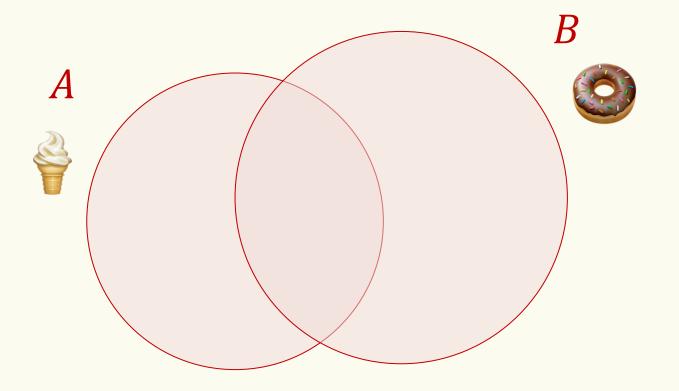
Recap Disjoint Sets

Sets that do not contain common elements $(A \cap B = \emptyset)$



Inclusion-Exclusion

But what if the sets are not disjoint?



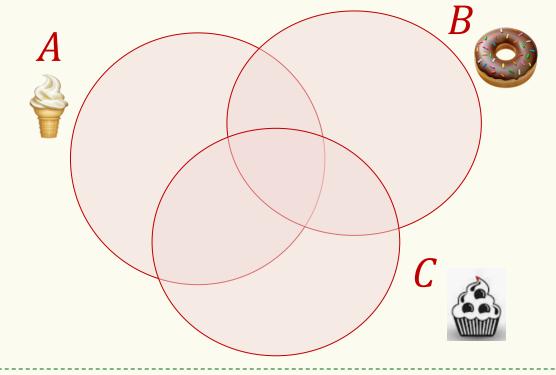
$$|A| = 43$$

 $|B| = 20$
 $|A \cap B| = 7$
 $|A \cup B| = ???$

Fact.
$$|A \cup B| = |A| + |B| - |A \cap B|$$

Inclusion-Exclusion

What if there are three sets?



$$|A| = 43$$

 $|B| = 20$
 $|C| = 35$
 $|A \cap B| = 7$
 $|A \cap C| = 16$
 $|B \cap C| = 11$
 $|A \cap B \cap C| = 4$
 $|A \cup B \cup C| = ???$

Fact.

$$|A \cup B \cup C| = |A| + |B| + |C|$$

- $|A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$

Inclusion-Exclusion

Let A, B be sets. Then $|A \cup B| = |A| + |B| - |A \cap B|$

In general, if $A_1, A_2, ..., A_n$ are sets, then

$$|A_1 \cup A_2 \cup \dots \cup A_n| = singles - doubles + triples - quads + \dots$$

= $(|A_1| + \dots + |A_n|) - (|A_1 \cap A_2| + \dots + |A_{n-1} \cap A_n|) + \dots$

Example: RSA

- In encrypting messages using RSA one starts with
 - Two big prime numbers p and q that are kept secret
 - Encodes messages using arithmetic $\operatorname{mod} N$ for N = pq.
 - One needs to work with numbers mod N that have no common factors with N ("co-prime with N")
 - Otherwise the secret leaks or decryption may not be defined uniquely.

To define RSA one needs to know how many such numbers there are...

Integers mod N co-prime with N = pq for p, q prime

$$B = \{0, q, 2q, \dots, (p-1)q\}$$

$$|B| = p$$

$$\text{multiples of } q$$

$$|A| = q$$

 $A \cap B$ contains multiples of $p \otimes q \pmod{N}$ $A \cap B = \{0\}$

Integers between 0 and N-1 that share a non-trivial divisor with $N=|A|+|B|-|A\cap B|=p+q-1$

Integers between 0 and N-1 that are co-prime with N

$$= N - (p + q - 1) = pq - p - q + 1 = (p - 1)(q - 1)$$

Agenda

- Recap & Finish Binomial Coefficients
- Binomial Theorem
- Inclusion-Exclusion