CE 312
Foundations of Computing II
Lecture 4: Counting pigeons, counting practice
My office tour today starry immediately after clays CSE 668
($\&$ zoom when in-perime clears)

Last Class: Counting

- Binomial Coefficients
- Binomial Theorem
- Inclusion-Exclusion

Today:

- Pigeonhole Principle
- Counting practice

Inclusion-Exclusion

But what if the sets are not disjoint?

Fact. $|A \cup B|=|A|+|B|-|A \cap B|$

Inclusion-Exclusion Example: RSA

Last time: For (distinct) primes p, q, and $N=p \cdot q$, how many integers in $\{0, \ldots, N-1\}$ have no common factor with N ?

Idea:
$-A=$ integers $\{0, \ldots, N-1\}$ divisible by $p=$ multiples of $p \bmod N$

- $B=$ integers $\{0, \ldots, N-1\}$ divisible by $q=\operatorname{multiples}$ of $q \bmod N$
- Wanted: $N-|A \cup B|$

Example: $p=3, q=5 \quad N=3 \times 5$

$$
B=\{0,5,10\}
$$

$|B|=3$

$A \cap B$ contains multiples of $3 \& 5(\bmod 15) \quad A \cap B=\{0\}$
\# Integers between 0 and 14 that share a non-trivial divisor with 15
$=|A|+|B|-|A \cap B|=3+5-1=7$
\# Integers between 0 and 14 that share no non-trivial divisor with 15
$=15-7=8=4 \cdot 2$

More general: Integers $\bmod N$ co-prime with $N=p q$ for p, q prime
$B=\{0, q, 2 q, \ldots,(p-1) q\} \sim A=\{0, p, 2 p, \ldots,(q-1) p\}$
$|B|=p$

$$
|A|=q
$$

$A \cap B$ contains multiples of $p \& q(\bmod N) \quad A \cap B=\{0\}$
\# Integers between 0 and $N-1$ that share a non-trivial divisor with N
$=|A|+|B|-|A \cap B|=p+q-1$
\# Integers between 0 and $N-1$ that are co-prime with N
$=N-(p+q-1)=p q-p-q+1=(p-1)(q-1)$

Last Class: Counting

- Binomial Coefficients
- Binomial Theorem
- Inclusion-Exclusion

Today:

- Pigeonhole Principle
- Counting practice

Pigeonhole Principle (PHP): Idea

10 pigeons, 9 pigeonholes

Pigeonhole Principle: Idea

If 11 children have to share 3 cakes, at least one cake must be shared by how many children?

Pigeonhole Principle - More generally

If there are n pigeons in $k<n$ holes, then one hole must contain at least $\frac{n}{k}$ pigeons!

Proof. Assume there are $<\frac{n}{k}$ pigeons per hole.
Then, there are $<k \cdot \frac{n}{k}=n$ pigeons overall.

Contradiction!

Pigeonhole Principle - Better version

If there are n pigeons in $k<n$ holes, then one hole must contain at least $\left\lceil\frac{n}{k}\right\rceil$ pigeons!

Reason. Can't have fractional number of pigeons

Syntax reminder: \ceí Irceil

- Ceiling: $\lceil x\rceil$ is x rounded up to the nearest integer (e.g., $[2.731\rceil=3$)
- Floor: $\lfloor x\rfloor$ is x rounded down to the nearest integer (e.g., $\lfloor 2.731\rfloor=2$)

Pigeonhole Principle: Strategy

To use the PHP to solve a problem, there are generally 4 steps

1. Identify pigeons
2. Identify pigeonholes
3. Specify how pigeons are assigned to pigeonholes
4. Apply PHP

Pigeonhole Principle - Example
In a room with 367 people, there are at least two with the same birthday.

Solution:

1. 367 pigeons $=$ people
2. 366 holes (365 for a normal year + Feb 29) $=$ possible birthdays
3. Person goes into hole corresponding to own birthday
4. By PHP, there must be two people with the same birthday

Pigeonhole Principle - Example (Surprising?)
In every set S of 100 integers, there are at least two elements whose difference is a multiple of 37.

When solving a PHP problem:

1. Pigeons: elements x in S
$\begin{array}{ll}\text { 1. } & \text { Identify pigeons } \\ \text { 2. } & \text { Identify pigeonholes }\end{array}$
2. Specify how pigeons are 372 . Pigeonholes: $[2,1,2, \ldots, 36\} \bmod 37$ assigned to pigeonholes
3. Apply PHP
4. By PHP: $\exists x \neq y \in S$

$$
\Rightarrow \begin{aligned}
x-y & =37 h
\end{aligned}
$$

Pigeonhole Principle - Example (Surprising?)

In every set S of 100 integers, there are at least two elements whose difference is a multiple of 37.

When solving a PHP problem:

1. Identify pigeons
2. Identify pigeonholes
3. Specify how pigeons are assigned to pigeonholes
4. Apply PHP

Pigeons: integers x in S
Pigeonholes: $\{0,1, \ldots, 36\}$

Assignment: x goes to $x \bmod 37$

Since $100>37$, by PHP, there are $x \neq y \in S$ s.t.
$x \bmod 37=y \bmod 37$ which implies
$x-y=37 k$ for some integer k

Last Class: Counting

- Binomial Coefficients
- Binomial Theorem
- Inclusion-Exclusion

Today:

- Pigeonhole Principle
- Counting practice

Quick Review of Cards

How many possible 5 card hands? $\binom{52}{5}$

- 52 total cards
- 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
- 4 different suits: Hearts, Diamonds, Clubs, Spades

Counting Cards I

- 52 total cards
- 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
- 4 different suits: Hearts, Diamonds, Clubs, Spades
- A "straight" is five consecutive rank cards of any suit (where A,2,3,4,5 also counts as consecutive). How many possible straights?

$$
10 \cdot 4^{5}=10,240
$$

Counting Cards II

- 52 total cards
- 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
- 4 different suits: Hearts, Diamonds, Clubs, Spades
- A flush is five card hand all of the same suit. How many possible flushes?

$$
\begin{aligned}
& \text { Suit } \times \begin{array}{c}
\text { rourly } \\
4
\end{array} \times\binom{ 13}{5} \\
& 4 \cdot\binom{13}{5}=5148
\end{aligned}
$$

Counting Cards III

- 52 total cards
- 13 different ranks: $2,3,4,5,6,7,8,9,10, J, Q, K, A$
- 4 different suits: Hearts, Diamonds, Clubs, Spades
- A flush is five card hand all of the same suit. How many possible flushes?

$$
4 \cdot\binom{13}{5}=5148
$$

- How many flushes are NOT straights?

$$
\begin{aligned}
& =\text { \#flush- \#flust afd straightats flushes } \\
& \text { loirsf rowh sut } \\
& \left(4 \cdot\binom{13}{5}=5148\right)-10 \cdot 4
\end{aligned}
$$

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

No sequence \rightarrow under counting Many sequences \rightarrow over counting

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

First choose 3 Aces. Then choose remaining two cards.

$$
\binom{4}{3} \cdot\binom{49}{2}
$$

Poll:

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

Many sequences $\boldsymbol{\rightarrow}$ over counting

EXAMPLE: How many ways are there to choos Problem: This counts a hand with contains at least 3 Aces?

First choose 3 Aces. Then choose remaining two cards.

$$
\binom{4}{3} \cdot\binom{49}{2}
$$

all 4 Aces in 4 different ways! e.g. it counts $A \&, A \vee, A \vee, A \uparrow, 2 \vee$ four times: $\{A *, A \diamond, A \bullet\}\{A \uparrow, 2 \vee\}$ $\{A *, A \diamond, A \uparrow\}\{A \vee, 2 \vee\}$ $\{A *, A \vee, A \uparrow\}\{A \diamond, 2 \vee\}$ $\{A \bullet, A \vee, A \uparrow\}\{A *, 2 \vee\}$

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

No sequence \rightarrow under counting Many sequences \rightarrow over counting

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

Use the sum rule
= \# 5 card hand containing exactly 3 Aces

+ \# 5 card hand containing exactly 4 Aces ${ }^{-\cdots--(}\binom{48}{1}$

Random Picture

8 by 8 chessboard

How many ways to place a pawn, a bishop, and a knight so that none are in the same row or column ?

(a) valid

(b) invalid

Sequential process:

1. Column for pawn
2. Row for pawn
3. Column for bishop
4. Row for bishop
5. Column for knight
6. Row for knight
$(8 \cdot 7 \cdot 6)^{2}$

Counting when order only partly matters

We often want to count \# of partly ordered lists:
Let $M=\#$ of ways to produce fully ordered lists
P = \# of partly ordered lists
N = \# of ways to produce corresponding fully ordered list given a partly ordered list

Then $M=P \cdot N$ by the product rule. Often M and N are easy to compute:

$$
P=M / N
$$

Dividing by N "removes" part of the order.

Rooks on chessboard

How many ways to place two identical rooks on a chessboard so that they don't share a row or a column

Fully ordered: Pretend Rooks are different

1. Column for rook1
2. Row for rook1
3. Column for rook2
4. Row for rook2

"Remove" the order of the
(b) inalid two rooks:

$$
(8 \cdot 7)^{2}
$$

$$
(8 \cdot 7)^{2} / 2
$$

Anagrams (another look at rearranging SEATTLE)

How many ways can you arrange the letters in "Godoggy"?

$$
\begin{aligned}
& n=7 \text { Letters, } k=4 \text { Types }\{\mathrm{G}, \mathrm{O}, \mathrm{D}, \mathrm{Y}\} \\
& n_{1}=3, n_{2}=2, n_{3}=1, n_{4}=1
\end{aligned}
$$

Multinomial Coefficients

If we have k types of objects (\boldsymbol{n} total), with $\boldsymbol{n}_{\boldsymbol{1}}$ of the first type, \boldsymbol{n}_{2} of the second, \ldots, and $\boldsymbol{n}_{\boldsymbol{k}}$ of the $k^{\text {th }}$, then the number of orderings possible is

$$
\binom{n}{n_{1}, n_{2}, \cdots, n_{k}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

Counting using binary encoding*
n \'j *aka."stars and bars method"
18111011

$$
\text { kat oj } x_{1} \quad n+h-1
$$

The number of ways to distribute n indistinguishable balls into k distinguishable bins is

$$
\binom{n+k-1}{k-1}=\binom{n+k-1}{n}
$$

E.g., = \# of ways to add k non-negative integers up to n

$$
\begin{aligned}
t_{i}=\# h_{\text {all }} & \operatorname{lin}_{i} m_{i} x_{1} x_{2} \cdots x_{n} \\
& x_{1}+x_{2}+\cdots+x_{n}=n
\end{aligned}
$$

Coins

How many ways can you distribute 32 identical coins among Alex, Barbara, Charlie, Dana, and Eve?

1. Identifyéliflls 32
2. Identify bins

$$
\binom{32+5-1}{5-1}
$$

Binomial Theorem

Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Corollary.

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Binomial Theorem: A less obvious consequence

Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}-\begin{aligned}
& =-1 \text { if } k \text { is odd } \\
& =+1 \text { if } k \text { is even }
\end{aligned}
$$

Corollary. For every n, if O and E are the sets of odd and even integers between 0 and n

$$
\sum_{k \in O}\binom{n}{k}=\sum_{k \in E}\binom{n}{k} \quad \text { e.g., } \mathrm{n}=4: 14641
$$

Proof: Set $x=-1, y=1$ in the binomial theorem

Tools and concepts

- Sum rule, Product rule
- Permutations, combinations
- Inclusion-exclusion
- Binomial Theorem
- Combinatorial proofs
- Pigeonhole principle
- Binary encoding/stars and bars

