CSE 312 Foundations of Computing II

Lecture 6: Conditional Probability and Bayes Theorem

Review Probability

Definition. A sample space Ω is the set of all possible outcomes of an experiment.

Definition. An event $E \subseteq \Omega$ is a subset of possible outcomes.

Examples:

- Single coin flip: $\Omega=\{H, T\}$
- Two coin flips: $\Omega=\{H H, H T, T H, T T\}$
- Roll of a die: $\Omega=\{1,2,3,4,5,6\}$

Examples:

- Getting at least one head in two coin flips: $E=\{H H, H T, T H\}$
- Rolling an even number on a die :

$$
E=\{2,4,6\}
$$

Review Probability space

Either finite or infinite countable (e.g., integers)

Definition. A (discrete) probability space

 is a pair (Ω, P) where:- Ω is a set called the sample space.
- P is the probability measure, a function $P: \Omega \rightarrow \mathbb{R}$ such that:
- $P(x) \geq 0$ for all $x \in \Omega$
$-\sum_{x \in \Omega} P(x)=1$

Some outcome must show up

The likelihood (or probability) of each outcome is non-negative.

Set of possible elementary outcomes

$$
A \subseteq \Omega: P(A)=\sum_{x \in \mathrm{~A}} P(x)
$$

Specify Likelihood (or probability) of each elementary outcome

Review Axioms of Probability

Let (Ω, P) be a probability space. Then, the following properties hold for any two events $E, F \subseteq \Omega$.

Axiom 1 (Non-negativity): $P(E) \geq 0$.
Axiom 2 (Normalization): $P(\Omega)=1$.
Axiom 3 (Countable Additivity): If E and F are mutually exclusive, then $P(E \cup F)=P(E)+P(F)$

Corollary 1 (Complementation): $P\left(E^{c}\right)=1-P(E)$.
Corollary 2 (Monotonicity): If $E \subseteq F, P(E) \leq P(F)$.
Corollary 3 (Inclusion-Exclusion): $P(E \cup F)=P(E)+P(F)-P(E \cap F)$.

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- More Examples

Conditional Probability (Idea)

What's the probability that someone likes ice cream given they like donuts?

Conditional Probability

Definition. The conditional probability of event \mathbb{A} given an event (B) happened (assuming $P(B) \neq 0$) is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

An equivalent and useful formula is

$$
P(A \cap B)=P(A \mid B) P(B)
$$

Conditional Probability Examples

Suppose that you flip a fair coin twice. What is the probability that both flips are heads given that you have at least one head?

Let © be the event that at least one flip is heads

$$
O=\{H H, H T, T H\}
$$ Let B be the event that both flips are heads

$$
P(O)=3 / 4 \quad P(B)=1 / 4 \quad P(B \cap O)=1 / 4
$$

$$
B \cap C=\{h \pi\}
$$

$$
B=\{+\pi\}_{\Omega}
$$

$H H$	$H T$
$T H$	$T T$

$$
P(B \mid O)=\left\lvert\, \frac{P(\underline{B \cap} \underline{O})}{P(\underline{Q})}=\frac{1 / \underline{4}}{3 / 4}=\frac{1}{3}\right.
$$

Conditional Probability Examples

$$
P(H e \mid T)
$$

Suppose that you flip a fair coin twice.
What is the probability that at least one flip is heads given that at least one flip is tails?

Let H be the event that at least one flip is heads Let T be the event that at least one flip is tails

$$
\begin{aligned}
& H=\{H T, T H, H H\} \\
& T=\{H T, T / T, T T\}
\end{aligned}
$$

$$
P(H \mid T)=\frac{P(H \cap T)}{P(T)}=\frac{P(\{M \pi, T / K)}{3 / 4}=
$$

$$
1 / 2 \cdot \frac{4}{3}=\frac{2}{3}
$$

Conditional Probability Examples

Suppose that you flip a fair coin twice. What is the probability that at least one flip is heads given that at least one flip is tails?

Let H be the event that at least one flip is heads
Let T be the event that at least one flip is tails

$$
P(H)=3 / 4 \quad P(T)=3 / 4 \quad P(H \cap T)=1 / 2
$$

$$
P(H \mid T)=\frac{P(H \cap T)}{P(T)}=\frac{1 / 2}{3 / 4}=\frac{2}{3}
$$

Reversing Conditional Probability

Question: Does $P(A \mid B)=P(B \mid A)$?

No!

- Let A be the event you are wet
- Let B be the event you are swimming

$$
\begin{aligned}
& P(A \mid B)=1 \\
& P(B \mid A) \neq 1
\end{aligned}
$$

Example with Conditional Probability

Suppose we toss a red die and a blue die: both 6 sided and all outcomes equally likely.
What is $P(B)$? What is $P(B \mid A)$?

	$P(B)$	$P(B \mid A)$
a)	$1 / 6$	$1 / 6$
b)	$1 / 6$	$1 / 3$
c)	$1 / 6$	$3 / 36$
d)	$1 / 9$	$1 / 3$

$$
\begin{aligned}
& P(B)=\frac{6}{36}=\frac{1}{6} \frac{1}{36} \\
& \begin{aligned}
& P(B(A)=\frac{P(n \cap A)}{P(A)}=\frac{P\left(\varepsilon(1,3)^{<}\right)}{3 / 36} \\
&=1 / 3
\end{aligned}
\end{aligned}
$$

Gambler's fallacy

Assume we toss 51 fair coins.
Assume we have seen 50 coins, and they are all "tails".
What are the odds the $\mathbf{5 1}^{\text {st }}$ coin is "heads"?
$A=$ first 50 coins are "tails"
$B=$ first 50 coins are "tails", $51^{\text {st }}$ coin is "heads"
$51^{\text {st }}$ coin is independent of
$P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{1 / 2^{51}}{2 / 2^{51}}=\frac{1}{2}$ outcomes of first 50 tosses!

Gambler's fallacy = Feels like it's time for "heads"!?

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- More Examples

Bayes Theorem

A formula to let us "reverse" the conditional.

Theorem. (Bayes Rule) For events A and B, where $P(A), P(B)>0$,

$$
P(A \mid B)=\frac{P(B \mid A)}{P(B)}
$$

$P(A)$ is called the prior (our belief without knowing anything)
$P(A \mid B)$ is called the posterior (our belief after learning B)

Bayes Theorem Proof
Claim:

$$
\begin{aligned}
P(A \cap B) & =P(A) \cdot B(B \mid A) \\
= & P(B) \cdot P(A \mid B) \\
P(B \cap A) & =P(B) \\
P(A \mid B) & =\frac{P(A) \cdot P(B \mid A)}{P(B)}
\end{aligned}
$$

Bayes Theorem Proof

Claim:

By definition of conditional probability

$$
P(A \cap B)=P(A \mid B) P(B)
$$

Swapping A, B gives

$$
P(B \cap A)=P(B \mid A) P(A)
$$

But $P(A \cap B)=P(B \cap A)$, so

$$
P(A \mid B) P(B)=P(B \mid A) P(A)
$$

Dividing both sides by $P(B)$ gives

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Brain Break

Second Edition
 Doing Bayesian Data Analysis

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- More Examples

Partitions (Idea)

These events partition the sample space

1. They "cover" the whole space
2. They don't overlap

Partition

Definition. Non-empty events $E_{1}, E_{2}, \ldots, E_{n}$ partition the sample space Ω if (Exhaustive)

$$
\begin{aligned}
& E_{1} \cup E_{2} \cup \cdots \cup E_{n}=\bigcup_{i=1}^{n} E_{i}=\Omega, \\
& \text { clusive) }
\end{aligned}
$$

(Pairwise Mutually Exclusive)

$$
\forall_{i} \forall_{i \neq j} \quad \underline{E_{i} \cap E_{j}}=\emptyset
$$

Law of Total Probability (Idea)

If we know $E_{1}, E_{2}, \ldots, E_{n}$ partition Ω, what can we say about $P(F)$?

$$
\begin{array}{ll}
P(F) \quad & P\left(\neq \cap E_{1}\right) \\
& P\left(F \cap E_{2}\right) \\
& P\left(F \cap E_{3}\right) \\
& P\left(F \cap E_{L}\right)=c
\end{array}
$$

Law of Total Probability (LTP)

Definition. If events $E_{1}, E_{2}, \ldots, E_{n}$ partition the sample space Ω, then for any event F

$$
P(F)=P\left(F \cap E_{1}\right)+\ldots+P\left(F \cap E_{n}\right)=\sum_{i=1}^{n} P\left(F \cap E_{i}\right)
$$

Using the definition of conditional probability $P(F \cap E)=P(F \mid E) P(E)$ We can get the alternate form of this that shows

$$
P(F)=\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)
$$

Another Contrived Example

Alice has two pockets:

- Left pocket: Two red balls, two green balls
- Right pocket: One red ball, two green balls.

Alice picks a random ball from a random pocket.
[Both pockets equally likely, each ball equally likely.]

Sequential Process

- Left pocket: Two red, two green
- Right pocket: One red, two green.
$1 / 3=P($ R $\|$ Right $)$ and $2 / 3=\neq($ G \mid Right $)$

$$
\begin{aligned}
P(\mathbf{R}) & =P(\mathbf{R} \cap \text { Left })+P(\mathbf{R} \cap \text { Right }) \quad \text { (Law of total probability }) \\
& =P(\text { Left }) \times P(\mathbf{R} \mid \text { Left })+P(\text { Right }) \times P(\mathbf{R} \mid \text { Right })
\end{aligned}
$$

$$
=\frac{1}{2} \times \frac{1}{2}+\frac{1}{2} \times \frac{1}{3}=\frac{1}{4}+\frac{1}{6}=\frac{5}{12}
$$

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- More Examples

Example - Zika Testing

Zika fever

OVERVIEW

A disease caused by Zika virus that's spread through mosquito bites.

Usually no or mild symptoms (rash); sometimes severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns "positive", what is the likelihood that you actually have the disease?

- Tests for diseases are rarely 100% accurate.

Example - Zika Testing

$$
\begin{aligned}
P(T) & =P(T \cap z)+P\left(T \cap 7^{C}\right) \\
& =P(7) \cdot P(T \mid z) r
\end{aligned}
$$

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") $\quad P(T \mid Z)$
- However, the test may yield a "false positive" 1% of the time $P\left(T \mid Z^{C}\right)$
- 0.5% of the US population has Zika. $\quad P(Z)$

$$
985
$$

What is the probability you have Zika (event Z) iffy you test positive (event T).?

$$
\begin{aligned}
& P\left(Z \left\lvert\,=\frac{P(T \mid Z) \cdot P(Z)-0.5 / c}{P(T)}=0.33\right.\right. \\
& 1 / 11 \quad 1-P(711 \% \\
& P(7) P(T / 7)=P(T \cap Z) \quad P\left(T \cap 7^{c}\right)=P\left(7^{c}\right) \cdot P\left(T / z^{c}\right)
\end{aligned}
$$

Example - Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") $\quad P(T \mid Z)$
- However, the test may yield a "false positive" 1% of the time $P\left(T \mid Z^{c}\right)$

500 have Zika 99,500 do not

- 0.5% of the US population has Zika. $P(Z)$

What is the probability you have Zika (event Z) if you test positiv (event T)?

Suppose we had 100,000 people:

- 490 have Zika and test positive
- 10 have Zika and test negative
- 98,505 do not have Zika and test negative
- 995 do not have Zika and test positive

Demo

$$
\frac{490}{490+995} \approx 0.33
$$

Philosophy - Updating Beliefs

While it's not 98% that you have the disease, your beliefs changed drastically
Z = you have Zika
T = you test positive for Zika

Prior: $P(Z)$

Posterior: $P(Z \mid T)$

Example - Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") $P(T \mid Z)$
- However, the test may yield a "false positive" 1% of the time $P\left(T \mid Z^{C}\right)$
- 0.5% of the US population has Zika. $P(Z)$

What is the probability you test negative (event T^{c}) if you have Zika (event Z)?

$$
P\left(T^{c} \mid Z\right)=1-P(T \mid Z)=2 \%
$$

Conditional Probability Defines a Probability Space

The probability conditioned on \mathcal{A} follows the same properties as (unconditional) probability.

Example. $P\left(\mathcal{B}^{c} \mid \mathcal{A}\right)=1-P(\mathcal{B} \mid \mathcal{A})$

Formally. (Ω, P) is a probability space and $P(\mathcal{A})>0$

