## CSE 312 Foundations of Computing II

Lecture 7: Bayesian Inference, Chain Rule, Independence

## Review Conditional \& Total Probabilities

- Conditional Probability

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

- Bayes Theorem

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} \quad \text { if } P(A) \neq 0, P(B) \neq 0
$$

- Law of Total Probability $E_{1}, \ldots, E_{n}$ partition $\Omega$


$$
P(F)=\sum_{i=1}^{n} P\left(F \cap E_{i}\right)=\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)
$$

## Agenda

- Bayes Theorem + Law of Total Probability
- Chain Rule
- Independence
- Infinite process and Von Neumann's trick
- Conditional independence


## Example - Zika Testing

Suppose we know the following Zika stats

- A test is $98 \%$ effective at detecting Zika ("true positive") $\quad P(T \mid Z)$
- However, the test may yield a "false positive" $1 \%$ of the time $P\left(T \mid Z^{C}\right)$
- $0.5 \%$ of the US population has Zika. $\quad P(Z)$

What is the probability you test negative (event $T^{c}$ ) if you have Zika (event $Z$ )?

$$
P\left(T^{c} \mid Z\right)=1-P(T \mid Z)=2 \%
$$

What is the probability you have Zika (event $Z$ ) if you test negatiye (event ${ }^{c}$ )?

$$
\text { By Bayes Rule, } P\left(Z \mid T^{c}\right)=\frac{P\left(T^{c} \mid Z\right) P(Z)}{P\left(T^{c}\right)}
$$

By the Law of Total Probability, $P\left(T^{c}\right)=P\left(T^{c} \mid Z\right) P(Z)+P\left(T^{c} \mid Z^{c}\right) P^{C}\left(Z^{c}\right)$

$$
\begin{aligned}
& \quad=\left(\frac{2}{100} \cdot \frac{5}{1000}+\left(1-\frac{1}{100}\right) \cdot \frac{995}{1000} \neq \frac{10}{100000}+\frac{98505}{100000}\right. \\
& \text { So, } P\left(Z \mid T^{C}\right)=\frac{10}{10+98505} \approx 0.01 \%
\end{aligned}
$$

## Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_{1}, E_{2}, \ldots, E_{n}$ be a partition of the sample space, and $F$ and event. Then,

$$
P\left(E_{1} \mid F\right)=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{P(F)}=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)}
$$

Simple Partition: In particular, if $E$ is an event with non-zero probability, then

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P\left(F \mid E^{C}\right) P\left(E^{C}\right)}
$$

## Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_{1}, E_{2}, \ldots, E_{n}$ be a partition of the sample space, and $F$ and event. Then,

$$
P\left(E_{1} \mid F\right)=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{P(F)}=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)}
$$

Simple Partition: In particu $\begin{aligned} & \text { We just used this implicity on the negative Zika } \\ & \text { test example with } E=Z \text { and } F=T^{c}\end{aligned}$
probability, then

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P\left(F \mid E^{C}\right) P\left(E^{C}\right)}
$$

## Our First Machine Learning Task: Spam Filtering

## Subject: "FREE \$\$\$ CLICK HERE"

What is the probability this email is spam, given the subject contains "FREE"?

Some useful stats:

- $10 \%$ of ham (i.e., not spam) emails contain the word "FREE" in the subject.
$-70 \%$ of spam emails contain the word "FREE" in the subject.
- $80 \%$ of emails you receive are spam.


## Agenda

- Bayes Theorem + Law of Total Probability
- Chain Rule
- Independence
- Infinite process and Von Neumann's trick
- Conditional independence

Chain Rule

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)} \quad \Longrightarrow \quad P(A) P(B \mid A)=P(A \cap B)
$$

Often probability space $(\Omega, \mathbb{P})$ is given implicitly via sequential process

Recall from last time:

$P(\mathbf{R})=P($ Left $) \times P(\mathbf{R} \mid$ Left $)+P($ Right $) \times P(\mathbf{R} \mid$ Right $)$

What if we have more than two (e.g., $n$ ) steps?

## Chain Rule

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)} \quad \square \quad P(A) P(B \mid A)=P(A \cap B)
$$

Theorem. (Chain Rule) For events $A_{1}, A_{2}, \ldots, A_{n}$,

$$
\begin{aligned}
& P\left(A_{1} \cap \cdots \cap A_{n}\right)=\underbrace{P\left(A_{1}\right) \cdot P\left(A_{2} \mid A_{1}\right) \cdot P\left(A_{3} \mid A_{1} \cap A_{2}\right)}_{P\left(A_{1} \cap A_{2} \cap A_{3}\right)} \\
& \cdots P\left(A_{n} \mid A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right)
\end{aligned}
$$

An easy way to remember: We have $n$ tasks and we can do them sequentially, conditioning on the outcome of previous tasks

## Chain Rule Example

Shuffle a standard 52 -card deck and draw the top 3 cards. (uniform probability space)


## Agenda

- Bayes Theorem + Law of Total Probability
- Chain Rule
- Independence
- Infinite process and Von Neumann's trick
- Conditional independence


## Independence

Definition. Two events $A$ and $B$ are (statistically) independent if

$$
P(B \backslash A)=\frac{P(A \cap B)}{\Gamma^{\top}(A)}=P(A) \cdot P(B) .
$$

Equivalent formulations:

- If $P(A) \neq 0$, equivalent to $P(B \mid A)=P(B)$
- If $P(B) \neq 0$, equivalent to $P(A \mid B)=P(A)$
"The probability that $B$ occurs after observing $A$ " - Posterior
= "The probability that $B$ occurs" - Prior


## Independence - Example

Assume we toss two fair coins
"first coin is heads"
$A=\{\mathrm{HH}, \mathrm{HT}\}$
$B=\{\mathrm{HH}, \mathrm{TH}\} \quad P(B)=2 \times \frac{1}{4}=\frac{1}{2}$

$$
P(A \cap B)=P(\{H H\})=\frac{1}{4}=P(A) \cdot P(B)
$$

Example - Independence

Toss a coin 3 times. Each of 8 outcomes equally likely.

- $A=\{$ at most one $T\}=\{H H H, H H T, H T H, T H H\}$
$\frac{1}{2}$
- $B=\left\{\right.$ at most two $\left.H^{\prime} \mathrm{s}\right\}=\{H H H\}^{c}$, Independent?

$$
\frac{7}{8}
$$

$$
\begin{array}{ll}
P(A \cap B) \rightleftharpoons P(A) \cdot P(B) & \frac{7}{8} \cdot \frac{1}{2}=\frac{7}{16} \\
& \frac{3}{8} \\
\frac{3}{8} \neq \frac{1}{2} \cdot \frac{7}{8} & \begin{array}{l}
\text { A. Yes, independent }
\end{array} \\
\text { B. No }
\end{array}
$$

## Multiple Events - Mutual Independence

Definition. Events $A_{1}, \ldots, A_{n}$ are mutually independent if for every non-empty subset $I \subseteq\{1, \ldots, n\}$, we have

$$
P\left(\bigcap_{i \in I} A_{i}\right)=\prod_{i \in I} P\left(A_{i}\right) .
$$

## Example - Network Communication

Each link works with the probability given, independently
i.e., mutually independent events $A, B, C, D$ with

$$
\begin{aligned}
& P(A)=p \\
& P(B)=q \\
& P(C)=r \\
& P(D)=s
\end{aligned}
$$



## Example - Network Communication

If each link works with the probability given, independently: What's the probability that nodes 1 and 4 can communicate?
$P(1-4$ connected $)=P((A \cap B) \cup(C \cap D))$

$$
=P(A \cap B)+P(C \cap D)-P(A \cap B \cap C \cap D)
$$

$P(A \cap B)=P(A) \cdot P(B)=p q$
$P(C \cap D)=P(C) \cdot P(D)=r s$
$P(A \cap B \cap C \cap D)$
$=P(A) \cdot P(B) \cdot P(C) \cdot P(D)=p q r s$

$$
P(1-4 \text { connected })=p q+r s-p q r s
$$

## Independence as an assumption

- People often assume it without justification
- Example: A skydiver has two chutes
$A$ : event that the main chute doesn't open $\quad P(A)=0.02$
$B$ : event that the back-up doesn't open $\quad P(B)=0.1$
- What is the chance that at least one opens assuming independence?

Assuming independence doesn't justify the assumption!
Both chutes could fail because of the same rare event e.g., freezing rain.

## Independence - Another Look

Definition. Two events $A$ and $B$ are (statistically) independent if

$$
P(A \cap B)=P(A) \cdot P(B) .
$$

"Equivalently." $P(A \mid B)=P(A)$.

It is important to understand that independence is a property of probabilities of outcomes, not of the root cause generating these events.

Events generated independently $\rightarrow$ their probabilities satisfy independence


This can be counterintuitive!

Sequential Process


Are R and 3R3B independent?

## Ball drawn

Setting: An urn contains:

- 3 red and 3 blue balls w/ probability 3/5
- 3 red and 1 blue balls $w /$ probability $1 / 10$
- 5 red and 7 blue balls w/ probability 3/10 We draw a ball at random from the urn.

$$
P(\mathbf{R})=\frac{3}{5} \times \frac{1}{2}+\frac{1}{10} \times \frac{3}{4}+\frac{3}{10} \times \frac{5}{12}=\frac{1}{2}
$$

$$
P(3 R 3 B) \times P(R \mid 3 R 3 B)
$$

$$
\text { Independent! } P(\mathbf{R})=P(\mathbf{R} \mid 3 \mathbf{R} 3 \mathbf{B})
$$



## Agenda

- Bayes Theorem + Law of Total Probability
- Chain Rule
- Independence
- Infinite process and Von Neumann’s trick
- Conditional independence

Often probability space $(\Omega, P)$ is given implicitly via sequential process

- Experiment proceeds in $n$ sequential steps, each step follows some local rules defined by the chain rule and independence
- Natural extension: Allows for easy definition of experiments where $|\Omega|=\infty$


## Fun: Von Neumann's Trick with a biased coin

- How to use a biased coin to get a fair coin flip:
- Suppose that you have a biased coin:
- $P(H)=p \quad P(T)=1-p$

1. Flip coin twice: If you get $H H$ or $T T$ go to step 1 2. If you got $H T$ output $H$; if you got $T H$ output $T$.

Why is it fair? $P(H)=P(H T)=p(1-p)=(1-p) p=P(T H)=P(T)$
Drawback: You may never get to step 2.

## The sample space for Von Neumann's trick

- For each round of Von Neumann's trick we flipped the biased coin twice.
- If HT or TH appears, the experiment ends:
- Total probability each round: $2 p(1-p)$ call this $q$
- If $H H$ or $T T$ appears, the experiment continues:
- Total probability each round: $p^{2}+(1-p)^{2}$ this is $1-q$
- Probability that flipping ends in round $t$ is $(1-q)^{t-1} \cdot q$
- Conditioned on ending in round $t, P(H)=P(T)=1 / 2$


## Sequential Process - Example



## The sample space for Von Neumann's trick

More precisely, the sample space contains the successful outcomes:

$$
\cup_{t=1}^{\infty}(H H \cup T T)^{t-1}(H T \cup T H)
$$

which together have probability $\sum_{t=1}^{\infty}(1-q)^{t-1} q$ for $q=2 p(1-p)$ as well as all of the failing outcomes in $\left(H H \cup T T^{\prime}\right)^{\infty}$.
Observe that $q \neq 0$ iff $0<p<1$. We have two cases: $\quad \frac{1}{1-v}=\frac{1}{q}$

- If $q \neq 0$ then $\sum_{t=1}^{\infty}(1-q)^{t-1}=1 / q$ so successful outcomes account for total probability 1.
$r=(1-q)$
- If $q=0$ then either:
- $p=1$ and $(H H)^{\infty}$ has probability 1 .
$-p=0$ and $(T T)^{\infty}$ has probability 1.


## Agenda

- Bayes Theorem + Law of Total Probability
- Chain Rule
- Independence
- Infinite process and Von Neumann's trick
- Conditional independence


## Conditional Independence

Definition. Two events $A$ and $B$ are independent conditioned on $C$ if

$$
P(C) \neq 0 \text { and } P(A \cap B \mid C)=P(A \mid C) \cdot P(B \mid C) .
$$

- If $P(A \cap C) \neq 0$, equivalent to $P(B \mid A \cap C)=P(B \mid C)$
- If $P(B \cap C) \neq 0$, equivalent to $P(A \mid B \cap C)=P(A \mid C)$

Plain Independence. Two events $A$ and $B$ are independent if

$$
P(A \cap B)=P(A) \cdot P(B)
$$

- If $P(A) \neq 0$, equivalent to $P(B \mid A)=P(B)$
- If $P(B) \neq 0$, equivalent to $P(A \mid B)=P(A)$


## Example - Throwing Dice

Suppose that Coin 1 has probability of heads 0.3
and Coin 2 has probability of head 0.9.
We choose one coin randomly with equal probability and flip that coin 3 times independently. What is the probability we get all heads?

$$
\begin{gathered}
P(\text { HHH })=P\left(\underline{H} H \underline{H}-\underline{C} \mid C_{1}\right) \cdot P\left(C_{1}\right)
\end{gathered}+P\left(H H H \mid C_{2}\right) \cdot P \underbrace{\text { Law of Total Probability }}_{\substack{\left(C_{2}\right) \\
\text { (LTP) }}}
$$

## Conditional independence and Bayesian inference in practice: Graphical models

- The sample space $\Omega$ is often the Cartesian product of possibilities of many different variables
- We often can understand the probability distribution $P$ on $\Omega$ based on local properties that involve a few of these variables at a time
- We can represent this via a directed acyclic graph augmented with probability tables (called a Bayes net) in which each node represents one or more variables...


## Graphical Models/Bayes Nets

- Bayes net for the Zika testing probability space $(\Omega, P)$


Conditional Probability Table:

- One column for each value of the variables at the node
- One row for each combination of values of immediate predecessors
$\Omega=$ Cartesian product of possible value assignments at all nodes.


## Graphical Models/Bayes Nets


"A Bayesian Network Model for Diagnosis of Liver Disorders" - Agnieszka Onisko, M.S., Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D.,Ph.D.- September 1999.

## Graphical Models/Bayes Nets

## Bayes Net assumption/requirement

- The only dependence between variables is given by paths in the Bayes Net graph:
- if only edges are
 then $\mathbf{A}$ and $\mathbf{C}$ are conditionally independent given the value of $\mathbf{B}$


Defines a unique global probability space $(\Omega, P)$

## Inference in Bayes Nets

## Given

- Bayes Net
- graph
- conditional probability tables for all nodes
- Observed values of variables at some nodes
- e.g., clinical test results


## Compute

- Probabilities of variables at other nodes
- e.g., diagnoses

For much more see CSE 473

"A Bayesian Network Model for Diagnosis of Liver Disorders" - Agnieszka Onisko, M.S., Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D.,Ph.D.September 1999.

