CSE 312 Foundations of Computing II

Lecture 8: Random Variables

Review Chain rule & independence

Theorem. (Chain Rule) For events $A_1, A_2, ..., A_n$, $P(A_1 \cap \cdots \cap A_n) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_1 \cap A_2)$ $\cdots P(A_n | A_1 \cap A_2 \cap \cdots \cap A_{n-1})$

Definition. Two events A and A are (statistically) **independent** if $P(A \cap B) = P(A) \cdot P(B)$.

"Equivalently." P(A|B) = P(A).

Definition. Two events A and B are **independent conditioned on** C if $P(C) \neq 0$ and $P(A \cap B \mid C) = P(A \mid C) \cdot P(B \mid C)$.

2

Announcements

- PSet 1 graded + solutions on canvas
- PSet 2 due tonight
- Pset 3 posted by tomorrow morning, 9am
 - First programming assignment (naïve Bayes)
 - Extensive intro in the sections tomorrow
 - Python tutorial lesson on edstem

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Random Variables (Idea)

Often: We want to **capture quantitative properties** of the outcome of a random experiment, e.g.:

- What is the total of two dice rolls?
- What is the number of coin tosses needed to see the first head?
- What is the number of heads among 2 coin tosses?

Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \to \mathbb{R}$.

The set of values that *X* can take on is called its range/support

Two common notations: $X(\Omega)$ or Ω_X

Example. Two coin flips: $\Omega = \{HH, HT, TH, TT\}$

X = number of heads in two coin flips

X(HH) = 2 X(HT) = 1 X(TH) = 1 X(TT) = 0

range (or support) of X is $X(\Omega) = \{0,1,2\}$

Another RV Example

20 different balls labeled 1, 2, ..., 20 in a jar

- Draw a subset of 3 from the jar uniformly at random
- Let X = maximum of the 3 numbers on the balls
 - Example: $X(\{2, 7, 5\}) = 7$
 - Example: $X(\{15, 3, 8\}) = 15$

pollev.com/paulbeame028

How large is $|X(\Omega)|$?

A.
$$20^3 \times$$

B. 20
C. 18
D. $\binom{20}{3} \cong |\mathcal{D}|$

Random Variables

Definition. For a RV $X: \Omega \to \mathbb{R}$, we define the event $\{X = x\} = \{\omega \in \Omega \mid X(\omega) = x\}$ We write $P(X = x) = P({X = x})$ **Random variables** $X(\omega) = x_4$ $X(\omega) = x_1$ partition the sample space. $X(\omega) = x_3$ $X(\omega) = x_2$ $\Sigma_{x \in X(\Omega)} P(X = x) = 1$ 8

Random Variables

Definition. For a RV $X: \Omega \to \mathbb{R}$, we define the event $\{X = x\} = \{\omega \in \Omega \mid X(\omega) = x\}$ We write $P(X = x) = P(\{X = x\})$ **Example.** Two coin flips: $\Omega = \{\text{TT, HT, TH, HH}\}$ X = number of heads in two coin flips $\Omega_X = X(\Omega) = \{0, 1, 2\}$ $P(X = 0) = \frac{1}{4}$ $P(X = 1) = \frac{1}{2}$ $P(X = 2) = \frac{1}{4}$

The RV X yields a new probability distribution with sample space $\Omega_X \subset \mathbb{R}!$

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the function $p_X: \Omega_X \to \mathbb{R}$ defined by $p_X(x) = P(X = x)$ is called the **probability mass function (PMF)** of X

Random variables **partition** the sample space. $\sum_{x \in X(\Omega)} P(X = x) = 1$

$$X(\omega) = x_1$$

$$X(\omega) = x_3$$

$$X(\omega) = x_2$$

$$X(\omega) = x_3$$

$$X(\omega) = x_1$$

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the function $p_X: \Omega_X \to \mathbb{R}$ defined by $p_X(x) = P(X = x)$ is called the **probability mass function (PMF)** of X

Random variables **partition** the sample space. $\sum_{x \in \Omega_X} P(X = x) = 1$

$$X(\omega) = x_1$$

$$X(\omega) = x_3$$

$$X(\omega) = x_2$$

$$X(\omega) = x_3$$

$$X(\omega) = x_1$$

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the function $p_X: \Omega_X \to \mathbb{R}$ defined by $p_X(x) = P(X = x)$ is called the **probability mass function (PMF)** of X

Random variables **partition** the sample space. $\sum_{x \in \Omega_X} p_X(x) = 1$

$$X(\omega) = x_1$$

$$X(\omega) = x_3$$

$$X(\omega) = x_2$$

$$X(\omega) = x_3$$

$$X(\omega) = x_1$$

$$X(\omega) = x_3$$

$$X(\omega) = x_1$$

$$X(\omega) = x_3$$

$$X(\omega) = x_1$$

$$X(\omega) = x_1$$

$$X(\omega) = x_1$$

$$X(\omega) = x_1$$

$$X(\omega) = x_2$$

$$X(\omega) = x_1$$

$$X(\omega) = x_1$$

$$X(\omega) = x_1$$

$$X(\omega) = x_2$$

$$X(\omega) = x_1$$

$$X(\omega) = x_2$$

$$X(\omega) = x_1$$

$$X(\omega) = x_2$$

$$X(\omega) = x_2$$

Example – Number of Heads

We flip *n* coins, independently, each heads with probability p ((-p)) $\Omega = \{HH \cdots HH, HH \cdots HT, HH \cdots TH, ..., TT \cdots TT\}$ X = # of heads $\int c (\chi \cdot h) c$ $v \in exactly thead$ $p_X(k) = P(X = k) = {n \choose k} \cdot p^k \cdot (1 - p)^{n-k}$ # of sequences with *k* heads
Prob of sequence w/ *k* heads

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Events concerning RVs

We already defined $P(X = x) = P({X = x})$ where ${X = x} = {\omega \in \Omega | X(\omega) = x}$

Sometimes we want to understand other events involving RV X

-e.g. $\{X \le x\} = \{\omega \in \Omega \mid X(\omega) \le x\}$ which makes sense for any $x \in \mathbb{R}$

More generally...

- We could take any predicate $Q(\cdot)$ defined on the real numbers, and consider an event $\{Q(X)\} = \{\omega \in \Omega \mid Q(X(\omega)) \text{ is true}\}$
- If $Q(\cdot, \cdot)$ is a predicate of two real numbers and X and Y are RVs both defined on Ω then $\{Q(X, Y)\} = \{\omega \in \Omega \mid Q(X(\omega), Y(\omega)) \text{ is true}\}$
- The same thing works for properties of even more RVs

Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the cumulative distribution function of X is the function $F_X: \mathbb{R} \to [0,1]$ that specifies for any real number x, the probability that $X \leq x$.

That is, F_X is defined by $F_X(x) = P(X \le x)$

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation <

Expectation (Idea)

Example. Two fair coin flips $\Omega = \{TT, HT, TH, HH\}$ X = number of heads

- If we chose samples from Ω over and over repeatedly, how many heads would we expect to see per sample from Ω?
 - The idealized number, not the average of actual numbers seen (which will vary from the ideal)

Expected Value of a Random Variable

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the **expectation** or **expected** value or mean of X is

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$$

or equivalently

$$\mathbb{E}[X] = \sum_{x \in \mathcal{X}(\Omega)} x \cdot P(X = x) = \sum_{x \in \Omega_X} x \cdot p_X(x)$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Expected Value

Definition. The expected value of a (discrete) RV *X* is $\mathbb{E}[X] = \sum_{x} x \cdot p_{X}(x) = \sum_{x} x \cdot P(X = x)$

Example. Value X of rolling one fair die $p_X(1) = p_X(2) = \dots = p_X(6) = \frac{1}{6}$ $\mathbb{E}[X] = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = \frac{21}{6} = 3.5$

For the equally-likely outcomes case, this is just the average of the possible outcomes!

Expectation

Example. Two fair coin flips $\Omega = \{TT, HT, TH, HH\}$ X = number of heads

Another Interpretation

"If X is how much you win playing the game in one round. How much would you expect to win, <u>on average</u>, per game, when repeatedly playing?"

Answer: $\mathbb{E}[X]$

Roulette (USA)

Ω:

Numbers 1-36

- 18 Red
- 18 Black Green o and oo

RVs for gains from some bets:

Note o and oo are not EVEN

RV RED: If Red number turns up +1, if Black number, 0, or 00 turns up -1 $\mathbb{E}[\text{RED}] = (+1) \cdot \frac{18}{38} + (-1) \cdot \frac{20}{38} = -\frac{2}{38} \approx -5.26\%$

RV 1st12: If number 1-12 turns up +2, if number 13-36, 0, or 00 turns up -1

$$\mathbb{E}[1^{\text{st}} \mathbb{1}^2] = (+2) \cdot \frac{12}{38} + (-1) \cdot \frac{26}{38} = -\frac{2}{38} \approx -5.26\%$$

27

Roulette (USA)

Ω:

Numbers 1-36

- 18 Red
- 18 Black

Green o and oo

An even worse bet:


```
Note o and oo are not EVEN
```

RV BASKET: If 0, 00, 1, 2, or 3 turns up +6 otherwise -1 $\mathbb{E}[\text{BASKET}] = (+6) \cdot \frac{5}{38} + (-1) \cdot \frac{33}{38} = -\frac{3}{38} \approx -7.89\%$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

Pr(w)	ω	$X(\boldsymbol{\omega})$	
1/6	1, 2, 3	3	
1/6	1, 3, 2	1	$\mathbb{E}[X] = 3 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6}$
1/6	2, 1, 3	1	
1/6	2, 3, 1	0	$= 6 \cdot \frac{1}{-} = 1$
1/6	3, 1, 2	0	6
1/6	3, 2, 1	1	

29

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Next time: Properties of Expectation