CSE 312 Foundations of Computing II

Lecture 8: Random Variables

Review Chain rule \& independence

Theorem. (Chain Rule) For events $A_{1}, A_{2}, \ldots, A_{n}$,

$$
\begin{aligned}
P\left(A_{1} \cap \cdots \cap A_{n}\right)=P\left(A_{1}\right) \cdot P\left(A_{2} \mid A_{1}\right) \cdot & P\left(A_{3} \mid A_{1} \cap A_{2}\right) \\
& \cdots P\left(A_{n} \mid A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right)
\end{aligned}
$$

Definition. Two events A and A are (statistically) independent if

$$
P(A \cap B)=P(A) \cdot P(B)
$$

"Equivalently." $P(A \mid B)=P(A)$.

Definition. Two events A and B are independent conditioned on C if

$$
P(C) \neq 0 \text { and } P(A \cap B \mid C)=P(A \mid C) \cdot P(B \mid C) .
$$

Announcements

- PSet 1 graded + solutions on canvas
- PSet 2 due tonight
- Pset 3 posted by tomorrow morning, gam
- First programming assignment (naïve Bayes)
- Extensive intro in the sections tomorrow
- Python tutorial lesson on edstem

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Random Variables (Idea)

Often: We want to capture quantitative properties of the outcome of a random experiment, e.g.:

- What is the total of two dice rolls?
- What is the number of coin tosses needed to see the first head?
- What is the number of heads among 2 coin tosses?

Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \rightarrow \mathbb{R}$.

The set of values that X can take on is called its range/support
Two common notations: $\underline{X(\Omega) \text { or } \Omega_{X}, ~}$
Example. Two coin flips: $\Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$

$$
X=\text { number of heads in two coin flips }
$$

$$
\begin{aligned}
& X(\mathrm{HH})=2 \quad X(\mathrm{HT})=1 \quad X(\mathrm{TH})=1 \quad X(\mathrm{TT})=0 \\
& \text { range (or support) of } X \text { is } X(\Omega)=\{0,1,2\}
\end{aligned}
$$

Another RV Example

20 different balls labeled $1,2, \ldots, 20$ in a jar

- Draw a subset of 3 from the jar uniformly at random
- Let $X=$ maximum of the 3 numbers on the balls
- Example: $X(\{2,7,5\})=7$
- Example: $X(\{15,3,8\})=15$

How large is $|X(\Omega)|$? pollev.com/paulbeame028

Random Variables

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, we define the event

$$
\{X=x\}=\{\omega \in \Omega \mid X(\omega)=x\}
$$

We write $P(X=x)=P(\{X=x\})$

Random variables partition the sample space.

$$
\Sigma_{x \in X(\Omega)} P(X=x)=1
$$

Random Variables

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, we define the event

$$
\{X=x\}=\{\omega \in \Omega \mid X(\omega)=x\}
$$

We write $P(X=x)=P(\{X=x\})$
fair
Example. Two coin flips: $\Omega=\{$ TT, HT, TH, HH $\}$

$$
\begin{aligned}
& X=\text { number of heads in two foin flips } \quad \Omega_{X}=X(\Omega)=\{0,1,2\} \\
& P(X=0)=\frac{1}{4} \quad P(X=1)=\frac{1}{2} \quad P(X=2)=\frac{1}{4}
\end{aligned}
$$

The RV X yields a new probability distribution with sample space $\Omega_{X} \subset \mathbb{R}$!

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Probability Mass Function (PMF)

Definition. For a $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the function $p_{X}: \Omega_{X} \rightarrow \mathbb{R}$ defined by $p_{X}(x)=P(X=x)$ is called the probability mass function (PMF) of X

Random variables partition the sample space.
$\sum_{x \in X(\Omega)} P(X=x)=1$

Probability Mass Function (PMF)

Definition. For a $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the function $p_{X}: \Omega_{X} \rightarrow \mathbb{R}$ defined by $p_{X}(x)=P(X=x)$ is called the probability mass function (PMF) of X

Random variables partition the sample space.
$\sum_{x \in \Omega_{X}} P(X=x)=1$

Probability Mass Function (PMF)

Definition. For a $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the function $p_{X}: \Omega_{X} \rightarrow \mathbb{R}$ defined by $p_{X}(x)=P(X=x)$ is called the probability mass function (PMF) of X

Random variables partition the sample space.
$\sum_{x \in \Omega_{X}} p_{X}(x)=1$

Example - Two Fair Dice

Example - Number of Heads

We flip n coins, independently, each heads with probability $p \quad p^{k}(1-p)^{n-k}$
$\Omega=\{$ HH \cdots HB, HB \cdots HT, HM \cdots TH,.., TY \cdots RT $\}$
$X=$ \# of heads

$$
\operatorname{Pr}(x=h) ?
$$

$$
p_{X}(k)=P(X=k)=\binom{n}{k} \cdot p^{k} \cdot(1-p)^{n-k}
$$

\# of sequences with k heads
Prob of sequence w / k heads

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF) -
- Expectation

Events concerning RVs

We already defined $P(X=x)=P(\{X=x\})$ where

$$
\{X=x\}=\{\omega \in \Omega \mid X(\omega)=x\}
$$

Sometimes we want to understand other events involving RV X

- e.g. $\{X \leq x\}=\{\omega \in \Omega \mid X(\omega) \leq x\}$ which makes sense for any $x \in \mathbb{R}$

More generally...

- We could take any predicate $\mathcal{Q}(\cdot)$ defined on the real numbers, and consider an event $\{Q(X)\}=\{\omega \in \Omega \mid \mathcal{Q}(X(\omega))$ is true $\}$
- If $Q(\cdot, \cdot)$ is a predicate of two real numbers and X and Y are RVs both defined on Ω then $\{Q(X, Y)\}=\{\omega \in \Omega \mid Q(X(\omega), Y(\omega))$ is true $\}$
- The same thing works for properties of even more RVs

Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function of X is the function $F_{X}: \mathbb{R} \rightarrow[0,1]$ that specifies for any real number x, the probability that $X \leq x$.

That is, F_{X} is defined by $F_{X}(x)=P(X \leq x)$

Example - Two fair coin flips

$X=$ number of heads

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Expectation (Idea)

Example. Two fair coin flips
$\Omega=\{\mathrm{TT}, \mathrm{HT}, \mathrm{TH}, \mathrm{HH}\}$
$X=$ number of heads

- If we chose samples from Ω over and over repeatedly, how many heads would we expect to see per sample from Ω ?
- The idealized number, not the average of actual numbers seen (which will vary from the ideal)

Expected Value of a Random Variable

Definition. Given a discrete $\operatorname{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of X is

$$
\mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[X]=\sum_{x \in \mathrm{X}(\Omega)} x \cdot P(X=x)=\sum_{x \in \Omega_{X}} x \cdot p_{X}(x)
$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Expected Value

Definition. The expected value of a (discrete) RV X is

$$
\mathbb{E}[X]=\sum_{x} x \cdot p_{X}(x)=\sum_{x} x \cdot P(X=x)
$$

Example. Value X of rolling one fair die

$$
p_{X}(1)=p_{X}(2)=\cdots=p_{X}(6)=\frac{1}{6}
$$

$\mathbb{E}[X]=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}=\frac{21}{6}=3.5$
For the equally-likely outcomes case, this is just the average of the possible outcomes!

Expectation

Example. Two fair coin flips
$\Omega=\{\mathrm{TT}, \mathrm{HT}, \mathrm{TH}, \mathrm{HH}\}$

What is $\mathbb{E}[X]$?

$X=$ number of heads

$$
\begin{aligned}
& \mathbb{E}[X]=0 \cdot p_{X}(0)+1 \cdot p_{X}(1)+2 \cdot p_{X}(2) \\
& \quad=0 \cdot \frac{1}{4}+1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}=\frac{1}{2}+\frac{1}{2}=1 \\
& 0
\end{aligned}
$$

Another Interpretation

"If X is how much you win playing the game in one round. How much would you expect to win, on average, per game, when repeatedly playing?"
Answer: $\mathbb{E}[X]$

Roulette (USA)

$\Omega:$
Numbers 1-36

- 18 Red
- 18 Black

Green o and oo

Note o and $o o$ are not EVEN

RVs for gains from some bets:
RV RED: If Red number turns up +1 , if Black number, 0 , or oo turns up -1

$$
\mathbb{E}[\operatorname{RED}]=(+1) \cdot \frac{18}{38}+(-1) \cdot \frac{20}{38}=-\frac{2}{38} \approx-5.26 \%
$$

RV 1 ${ }^{\text {st1 }} 12$: If number 1-12 turns up +2 , if number 13-36, o, or oo turns up -1

$$
\mathbb{E}\left[1^{s \mathrm{st}} 12\right]=(+2) \cdot \frac{12}{38}+(-1) \cdot \frac{26}{38}=-\frac{2}{38} \approx-5.26 \%
$$

Roulette (USA)

Ω :
Numbers 1-36

- 18 Red
- 18 Black

Green 0 and 00
An even worse bet:

Note o and 00 are not EVEN

RV BASKET: If $0,00,1,2$, or 3 turns up +6 otherwise -1

$$
\mathbb{E}[\mathrm{BASKET}]=(+6) \cdot \frac{5}{38}+(-1) \cdot \frac{33}{38}=-\frac{3}{38} \approx-7.89 \%
$$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

$$
\begin{aligned}
\mathbb{E}[X] & =3 \cdot \frac{1}{6}+1 \cdot \frac{1}{6}+1 \cdot \frac{1}{6}+0 \cdot \frac{1}{6}+0 \cdot \frac{1}{6}+1 \cdot \frac{1}{6} \\
& =6 \cdot \frac{1}{6}=1
\end{aligned}
$$

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Next time: Properties of Expectation

