CSE 312

Foundations of Computing II

Lecture 9: Linearity of Expectation

Last Class:

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Func (CDF)
- Expectation

Today:

- An Expectation Example
- Linearity of Expectation
- Indicator Random Variables

Review Random Variables

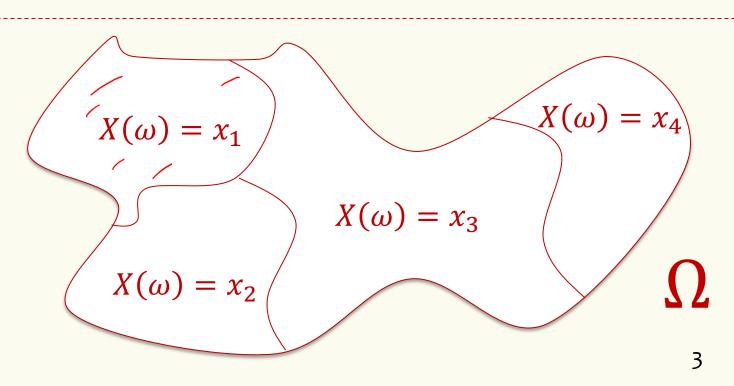
Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \to \mathbb{R}$.

The set of values that X can take on is its range/support: $X(\Omega)$ or Ω_X

$$\{X=x_i\}=\{\omega\in\Omega\mid X(\omega)=x_i\}$$

Random variables **partition** the sample space.

$$\Sigma_{x \in X(\Omega)} P(X = x) = 1$$



Review PMF and CDF

Definitions:

For a RV $X: \Omega \to \mathbb{R}$, the probability mass function (pmf) of X specifies, for any real number x, the probability that X = x

$$p_X(x) = P(X = x) = P(\{\omega \in \Omega \mid X(\omega) = x\})$$

 $\sum_{x \in \Omega_X} p_X(x) = 1$

For a RV $X: \Omega \to \mathbb{R}$, the cumulative distribution function (cdf) of X specifies, for any real number x, the probability that $X \leq x$

$$F_X(x) = P(X \le x)$$

Review Expected Value of a Random Variable

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the **expectation** or **expected** value or mean of X is

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$$

or equivalently

$$\mathbb{E}[X] = \sum_{x \in X(\Omega)} \underline{x} \cdot P(X = x) = \sum_{x \in \Omega_X} x \cdot p_X(x)$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Example - Flipping a biased coin until you see heads

Biased coin:

$$P(H) = q > 0$$
$$P(T) = 1 - q$$

• Z = # of coin flips until first head

$$P(Z=i) = q(1-q)^{i-1} \quad \text{[(7) = ?)} \qquad 1-q \qquad \dots$$

$$\mathbb{E}[Z] = \sum_{i=1}^{\infty} i \cdot P(Z = i) = \sum_{i=1}^{\infty} i \cdot q(1-q)^{i-1}$$
 Converges, so $\mathbb{E}[Z]$ is finite

Can calculate this directly but...

Example - Flipping a biased coin until you see heads

Biased coin:

$$P(H) = q > 0$$
$$P(T) = 1 - q$$

Z = # of coin flips until first head

Another view: If you get heads first try you get Z = 1; If you get tails you have used one try and have the same experiment left

$$\mathbb{E}[Z] = q + (1 - q)(\mathbb{E}[Z] + 1)$$

So
$$q \cdot \mathbb{E}[Z] = q + (1 - q) = 1$$

Implies $\mathbb{E}[Z] = 1/q$

Linearity of Expectation (Idea)

Let's say you and your friend sell fish for a living.

- Every day you catch X fish, with $\mathbb{E}[X] = 3$.
- Every day your friend catches Y fish, with $\mathbb{E}[Y] = 7$.

How many fish do the two of you bring in (Z = X + Y) on an average day?

$$\mathbb{E}[Z] = \mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y] = 3 + 7 = 10$$

You can sell each fish for \$5 at a store, but together you need to pay \$20 in rent. How much profit do you expect to make?

$$\mathbb{E}[5Z - 20] = 5\mathbb{E}[Z] - 20 = 5 \times 10 - 20 = 30$$

Linearity of Expectation

Theorem. For any two random variables X and Y (X, Y do not need to be independent)

$$\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y].$$

 $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y].$ Or, more generally: For any random variables X_1,\dots,X_n ,

$$\mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$$

Because:
$$\mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[(X_1 + \dots + X_{n-1}) + X_n]$$

$$= \mathbb{E}[X_1 + \dots + X_{n-1}] + \mathbb{E}[X_n] = \dots$$

Linearity of Expectation – Proof

Theorem. For any two random variables X and Y

(X, Y do not need to be independent)

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y].$$

$$\mathbb{E}[X + Y] = \sum_{\omega} P(\omega)(X(\omega) + Y(\omega))$$

$$= \sum_{\omega} P(\omega)X(\omega) + \sum_{\omega} P(\omega)Y(\omega)$$

$$= \mathbb{E}[X] + \mathbb{E}[Y]$$

Example – Coin Tosses

We flip n coins, each one heads with probability p Z is the number of heads, what is $\mathbb{E}(Z)$?

Example - Coin Tosses - The brute force method

We flip n coins, each one heads with probability p,

Z is the number of heads, what is $\mathbb{E}[Z]$?

$$\mathbb{E}[Z] = \sum_{k=0}^{n} k \cdot P(Z = k) = \sum_{k=0}^{n} k \cdot \binom{n}{k} p^{k} (1 - p)^{n - k}$$

$$= \sum_{k=0}^{n} k \cdot \frac{n!}{k! (n - k)!} p^{k} (1 - p)^{n - k} = \sum_{k=1}^{n} \frac{n!}{(k - 1)! (n - k)!} p^{k} (1 - p)^{n - k}$$

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-NC</u>

$$= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)! (n-k)!} p^{k-1} (1-p)^{n-k}$$

$$= np \sum_{k=0}^{n-1} \frac{(n-1)!}{k! (n-1-k)!} p^k (1-p)^{(n-1)-k}$$

Can we solve it more elegantly, please?

$$= np \sum_{k=0}^{n-1} {n-1 \choose k} p^k (1-p)^{(n-1)-k} = np (p + (1-p))^{n-1} = np \cdot 1 = np$$

Computing complicated expectations

Often boils down to the following three steps:

<u>Decompose</u>: Finding the right way to decompose the random variable into sum of simple random variables

$$X = X_1 + \dots + X_n$$

• LOE: Apply linearity of expectation.

$$\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$$

• Conquer: Compute the expectation of each X_i

Often, X_i are indicator (0/1) random variables.

Indicator random variables

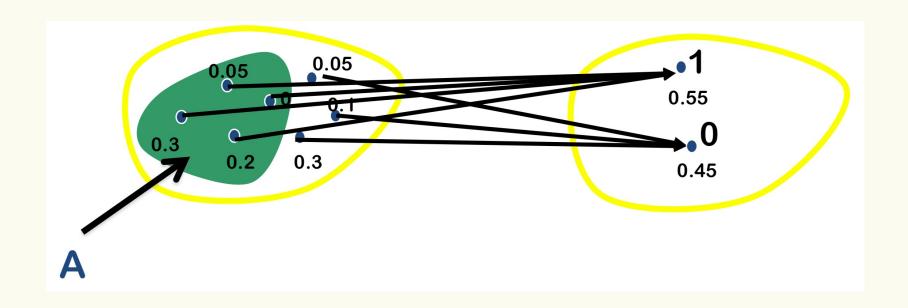
For any event A, can define the indicator random variable X_A for A

$$X_A = \begin{cases} 1 & \text{if event } A \text{ occurs} \\ 0 & \text{if event } A \text{ does not occur} \end{cases}$$

$$P(X_A = 1) = P(A)$$
$$P(X_A = 0) = 1 - P(A)$$

$$P(X_A = 1) = P(A)$$

 $P(X_A = 0) = 1 - P(A)$



Example – Coin Tosses

We flip n coins, each one heads with probability p

Z is the number of heads, what is $\mathbb{E}[Z]$?

$$- X_i = \begin{cases} 1, & i^{\text{th}} \text{ coin flip is heads} \\ 0, & i^{\text{th}} \text{ coin flip is tails.} \end{cases}$$

Fact.
$$Z = X_1 + \cdots + X_n$$

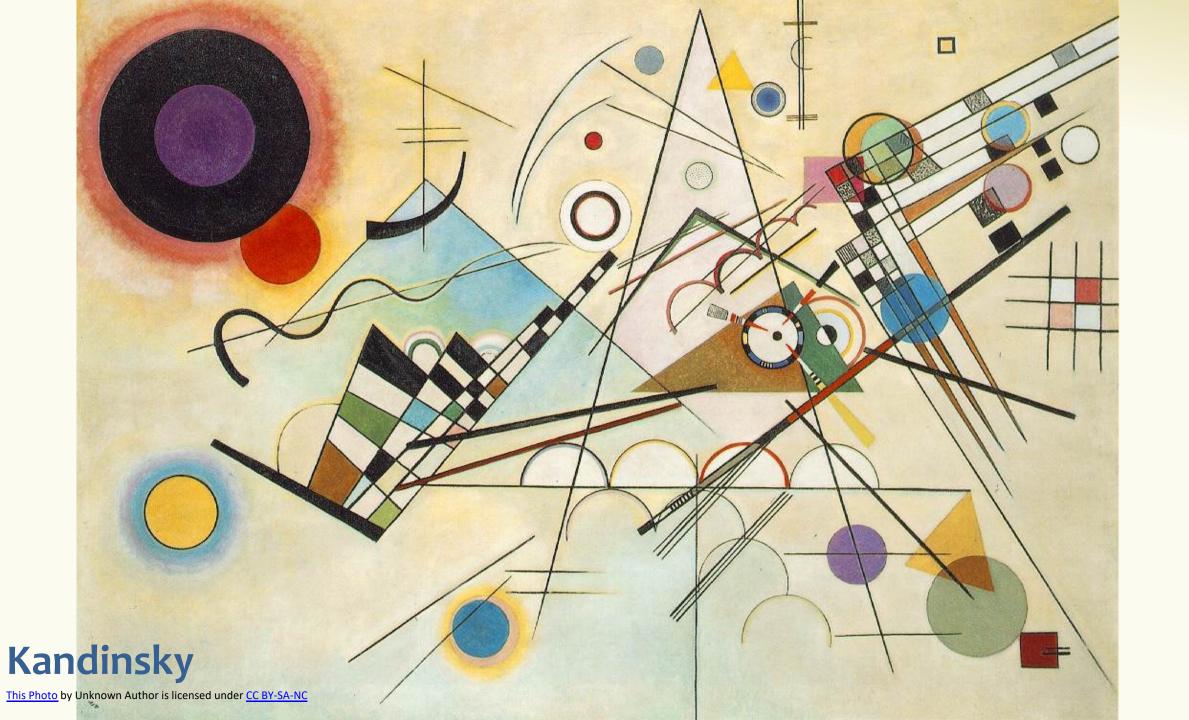
Linearity of Expectation:

$$\mathbb{E}[Z] = \mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n] = n \cdot p$$

$$P(X_i = 1) = p$$

$$P(X_i = 0) = 1 - p$$

$$\mathbb{E}[X_i] = p \cdot 1 + (1-p) \cdot 0 = p$$



Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

What is $\mathbb{E}[X]$? Use linearity of expectation!

Pr(ω)	ω	$X(\omega)$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

Decompose: What is X_i ?

$$X_i = 1$$
 iff i^{th} student gets own HW back (\circ)

LOE:
$$\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n] = ($$
Conquer: What is $\mathbb{E}[X_i]$? A. $\frac{1}{n}$ B. $\frac{1}{n-1}$ C. $\frac{1}{2}$

Poll: pollev.com/stefanotessaro617

Pairs with the same birthday

• In a class of m students, on average how many pairs of people have the same birthday (assuming 365 equally likely birthdays)?

<u>Decompose:</u> Indicator events involve **pairs** of students (i,j) for $i \neq j$ $X_{ij} = 1$ iff students i and j have the same birthday

LOE:
$$\binom{m}{2}$$
 indicator variables X_{ij}

$$\Im(\cancel{\downarrow}_{11}) = \frac{365}{365} = \frac{m(m-1)}{730}$$
Conquer: $\mathbb{E}[X_{ij}] = \frac{1}{365}$ so total expectation is $\frac{\binom{m}{2}}{365} = \frac{m(m-1)}{730}$ pairs

Linearity of Expectation – Even stronger

Theorem. For any random variables $X_1, ..., X_n$, and real numbers $a_1, ..., a_n \in \mathbb{R}$,

$$\mathbb{E}[a_1X_1 + \dots + a_nX_n] = a_1\mathbb{E}[X_1] + \dots + a_n\mathbb{E}[X_n].$$

Very important: In general, we do not have $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Linearity is special!

In general
$$\mathbb{E}[g(X)] \neq g(\mathbb{E}(X))$$

G(x)

$$g(x) = x^{2}$$

$$E(g(x, 4)] + g(E(x))$$

$$E(z)$$

ごわここ=1トナイーリー

E.g.,
$$X = \begin{cases} +1 \text{ with prob } 1/2 \\ -1 \text{ with prob } 1/2 \end{cases}$$

$$V(X^2 - I) = I$$
Then: $\mathbb{E}[X^2] \neq \mathbb{E}[X]^2$

How DO we compute $\mathbb{E}[g(X)]$?

Expected Value of g(X)



Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the **expectation** or **expected** value or mean of g(X) is

$$\mathbb{E}[g(X)] = \sum_{\omega \in \Omega} g(X(\omega)) \cdot P(\omega)$$

or equivalently

$$\mathbb{E}[g(X)] = \sum_{x \in X(\Omega)} g(x) \cdot P(X = x) = \sum_{x \in \Omega_X} g(x) \cdot p_X(x)$$

